Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only three aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, the Russian wheat aphid, Diuraphis noxia, and the green peach aphid, Myzus persicae. We present the whole genome sequence of a fourth aphid, the soybean aphid (Aphis glycines), which is an extreme specialist and an important invasive pest of soybean (Glycine max). The availability of genomic resources is important to establish effective and sustainable pest control, as well as to expand our understanding of aphid evolution. We generated a 302.9 Mbp draft genome assembly for Ap. glycines using a hybrid sequencing approach. This assembly shows high completeness with 19,182 predicted genes, 92% of known Ap. glycines transcripts mapping to contigs, and substantial continuity with a scaffold N of 174,505 bp. The assembly represents 95.5% of the predicted genome size of 317.1 Mbp based on flow cytometry. Ap. glycines contains the smallest known aphid genome to date, based on updated genome sizes for 19 aphid species. The repetitive DNA content of the Ap. glycines genome assembly (81.6 Mbp or 26.94% of the 302.9 Mbp assembly) shows a reduction in the number of classified transposable elements compared to Ac. pisum, and likely contributes to the small estimated genome size. We include comparative analyses of gene families related to host-specificity (cytochrome P450's and effectors), which may be important in Ap. glycines evolution. This Ap. glycines draft genome sequence will provide a resource for the study of aphid genome evolution, their interaction with host plants, and candidate genes for novel insect control methods.
Chitin synthases are critical enzymes for synthesis of chitin and thus for subsequent growth and development in insects. We identified the cDNA of chitin synthase gene (CHS) in Aphis glycines, the soybean aphid, which is a serious pest of soybean. The full-length cDNA of CHS in A. glycines (AyCHS) was 5802 bp long with an open reading frame of 4704 bp that encoded for a 1567 amino acid residues protein. The predicted AyCHS protein had a molecular mass of 180.05 kDa and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR) of chitin synthases. The quantitative real-time PCR (qPCR) analysis revealed that AyCHS was expressed in all major tissues (gut, fat body and integument); however, it had the highest expression in integument (~3.5 fold compared to gut). Interestingly, the expression of AyCHS in developing embryos was nearly 7 fold higher compared to adult integument, which probably is a reflection of embryonic molts in hemimetabolus insects. Expression analysis in different developmental stages of A. glycines revealed a consistent AyCHS expression in all stages. Further, through leaf dip bioassay, we tested the effect of diflubenzuron (DFB, Dimilin ®), a chitin-synthesis inhibitor, on A. glycines' survival, fecundity and body weight. When fed with soybean leaves previously dipped in 50 ppm DFB solution, A. glycines nymphs suffered significantly higher mortality compared to control. A. glycines nymphs feeding on diflubenzuron treated leaves showed a slightly enhanced expression (1.67 fold) of AyCHS compared to nymphs on untreated leaves. We discussed the potential applications of the current study to develop novel management strategies using chitin-synthesis inhibitors and using RNAi by knocking down AyCHS expression.
BackgroundWhile much recent research has expanded our understanding of the molecular interactions between aphids and their host plants, it is lacking for the soybean aphid, Aphis glycines. Since its North American invasion, A. glycines has become one of the most damaging insect pests on this important crop. Five soybean genes for host plant resistance to A. glycines have been identified, but populations of A. glycines have already adapted to overcome these resistance genes. Understanding the molecular interactions between resistant soybean and A. glycines can provide clues to its adaptation mechanisms. Here, we used RNA-Sequencing to compare and contrast A. glycines gene expression when fed resistant (Rag1) and susceptible soybean.ResultsCombining results from a previous A. glycines transcriptome, we generated 64,860 high quality transcripts, totaling 41,151,086 bases. Statistical analysis revealed 914 genes with significant differential expression. Most genes with higher expression in A. glycines on resistant plants (N = 352) were related to stress and detoxification such as cytochrome P450s, glutathione-S-transferases, carboxyesterases, and ABC transporters. A total of 562 genes showed lower transcript abundance in A. glycines on resistant plants. From our extensive transcriptome data, we also identified genes encoding for putative salivary effector proteins (N = 73). Among these, 6 effector genes have lower transcript abundance in A. glycines feeding on resistant soybean.ConclusionsOverall, A. glycines exhibited a pattern typical of xenobiotic challenge, thereby validating antibiosis in Rag1, presumably mediated through toxic secondary metabolites. Additionally, this study identified many A. glycines genes and gene families at the forefront of its molecular interaction with soybean. Further investigation of these genes in other biotypes may reveal adaptation mechanisms to resistant plants.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-972) contains supplementary material, which is available to authorized users.
Tomato (Solanum lycopersicum L.) has undergone intensive selection during and following domestication. We investigated population structure and genetic differentiation within a collection of 70 tomato lines representing contemporary (processing and fresh-market) varieties, vintage varieties and landraces. The model-based Bayesian clustering software, STRUCTURE, was used to detect subpopulations. Six independent analyses were conducted using all marker data (173 markers) and five subsets of markers based on marker type (single-nucleotide polymorphisms, simple sequence repeats and insertion/deletions) and location (exon and intron sequences) within genes. All of these analyses consistently separated four groups predefined by market niche and age into distinct subpopulations. Furthermore, we detected at least two subpopulations within the processing varieties. These subpopulations correspond to historical patterns of breeding conducted for specific production environments. We found no subpopulation within fresh-market varieties, vintage varieties and landraces when using all marker data. High levels of admixture were shown in several varieties representing a transition in the demarcation between processing and fresh-market breeding. The genetic clustering detected by using the STRUCTURE software was confirmed by two statistics, pairwise F st (y) and Nei's standard genetic distance. We also identified a total of 19 loci under positive selection between processing, freshmarket and vintage germplasm by using an F st -outlier method based on the deviation from the expected distribution of F st and heterozygosity. The markers and genome locations we identified are consistent with known patterns of selection and linkage to traits that differentiate the market classes. These results demonstrate how human selection through breeding has shaped genetic variation within cultivated tomato.
Heteroecious holocyclic aphids exhibit both sexual and asexual reproduction and alternate among primary and secondary hosts. Most of these aphids can feed on several related hosts, and invasions to new habitats may limit the number of suitable hosts. For example, the aphid specialist Aphis glycines survives only on the primary host buckthorn (Rhamnus spp.) and the secondary host soybean (Glycine max) in North America where it is invasive. Owing to this specialization and sparse primary host distribution, host colonization events could be localized and involve founder effects, impacting genetic diversity, population structure and adaptation. We characterized changes in the genetic diversity and structure across time among A. glycines populations. Populations were sampled from secondary hosts twice in the same geographical location: once after secondary colonization (early season), and again immediately before primary host colonization (late season). We tested for evidence of founder effects and genetic isolation in early season populations, and whether or not late-season dispersal restored genetic diversity and reduced fragmentation. A total of 24 single-nucleotide polymorphisms and 6 microsatellites were used for population genetic statistics. We found significantly lower levels of genotypic diversity and more genetic isolation among early season collections, indicating secondary host colonization occurred locally and involved founder effects. Pairwise F ST decreased from 0.046 to 0.017 in early and late collections, respectively, and while genetic relatedness significantly decreased with geographical distance in early season collections, no spatial structure was observed in late-season collections. Thus, late-season dispersal counteracts the secondary host colonization through homogenization and increases genetic diversity before primary host colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.