Smart Energy Systems represent a radical shift in the approach to energy generation and demand, driven by decentralisation of the energy system to large numbers of low-capacity devices. Managing this flexibility is often driven by machine learning, and requires real-time control and aggregation of these devices, involving a diverse set of companies and devices and creating a longer chain of trust. This poses a security risk, as it is sensitive to adversarial machine learning, whereby models are fooled through malicious input, either for financial gain or to cause system disruption. We show the feasibility of such an attack by analysing empirical data of a real system, and propose directions for future research related to detection and defence mechanisms for these kind of attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.