The visible-light-driven rotation
of an overcrowded alkene-based
molecular motor strut in a dual-function metal–organic framework
(MOF) is reported. Two types of functional linkers, a palladium–porphyrin
photosensitizer and a bispyridine-derived molecular motor, were used
to construct the framework capable of harvesting low-energy green
light to power the rotary motion. The molecular motor was introduced
in the framework using the postsynthetic solvent-assisted linker exchange
(SALE) method, and the structure of the material was confirmed by
powder (PXRD) and single-crystal X-ray (SC-XRD) diffraction. The large
decrease in the phosphorescence lifetime and intensity of the porphyrin
in the MOFs upon introduction of the molecular motor pillars confirms
efficient triplet-to-triplet energy transfer between the porphyrin
linkers and the molecular motor. Near-infrared Raman spectroscopy
revealed that the visible light-driven rotation of the molecular motor
proceeds in the solid state at rates similar to those observed in
solution.
Efficient photomolecular motors will be critical elements in the design and development of molecular machines. Optimisation of the quantum yield for photoisomerisation requires a detailed understanding of molecular dynamics in the excited electronic state. Here we probe the primary photophysical processes in the archetypal first generation photomolecular motor, with sub‐50 fs time resolved fluorescence spectroscopy. A bimodal relaxation is observed with a 100 fs relaxation of the Franck‐Condon state to populate a red‐shifted state with a reduced transition moment, which then undergoes multi‐exponential decay on a picosecond timescale. Oscillations due to the excitation of vibrational coherences in the S1 state are seen to survive the ultrafast structural relaxation. The picosecond relaxation reveals a strong solvent friction effect which is thus ascribed to torsion about the C−C axle. This behaviour is contrasted with second generation photomolecular motors; the principal differences are explained by the existence of a barrier on the excited state surface in the case of the first‐generation motors which is absent in the second generation. These results will help to provide a basis for designing more efficient molecular motors in the future.
Optical
spectroscopy is a powerful tool to interrogate quantum
states of matter. We present simulation results for the cross-polarized
two-dimensional electronic spectra of the light-harvesting system
LH2 of purple bacteria. We identify a spectral feature on the diagonal,
which we assign to ultrafast coherence transfer between degenerate
states. The implication for the interpretation of previous experiments
on different systems and the potential use of this feature are discussed.
In particular, we foresee that this kind of feature will be useful
for identifying mixed degenerate states and for identifying the origin
of symmetry breaking disorder in systems like LH2. Furthermore, this
may help identify both vibrational and electronic states in biological
systems such as proteins and solid-state materials such as hybrid
perovskites.
Light-driven unidirectional molecular rotary motors have the potential to power molecular machines. Consequently, optimizing their speed and efficiency is an important objective. Here, we investigate factors controlling the photochemical yield of the prototypical unidirectional rotary motor, a sterically overcrowded alkene, through detailed investigation of its excited-state dynamics. An isoviscosity analysis of the ultrafast fluorescence decay data resolves friction from barrier effects and reveals a 3.4 ± 0.5 kJ mol −1 barrier to excited-state decay in nonpolar media. Extension of this analysis to polar solvents shows that this barrier height is a strong function of medium polarity and that the decay pathway becomes near barrierless in more polar media. Thus, the properties of the medium can be used as a route for controlling the motor's excited-state dynamics. The connection between these dynamics and the quantum yield of photochemical isomerization is probed. The photochemical quantum yield is shown to be a much weaker function of solvent polarity, and the most efficient excited-state decay pathway does not lead to a strongly enhanced quantum yield for isomerization. These results are discussed in terms of the solvent dependence of the complex multidimensional excited-state reaction coordinate.
The curing of bis-methacrylate–styrene resins initiated by the cobalt catalyzed decomposition of cumyl hydroperoxide is monitored at ambient temperatures in situ by EPR and Raman spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.