We present Mockingjay as a new speech representation learning approach, where bidirectional Transformer encoders are pre-trained on a large amount of unlabeled speech. Previous speech representation methods learn through conditioning on past frames and predicting information about future frames. Whereas Mockingjay is designed to predict the current frame through jointly conditioning on both past and future contexts. The Mockingjay representation improves performance for a wide range of downstream tasks, including phoneme classification, speaker recognition, and sentiment classification on spoken content, while outperforming other approaches. Mockingjay is empirically powerful and can be fine-tuned with downstream models, with only 2 epochs we further improve performance dramatically. In a low resource setting with only 0.1% of labeled data, we outperform the result of Mel-features that uses all 100% labeled data.
Self-supervised learning (SSL) has proven vital for advancing research in natural language processing (NLP) and computer vision (CV). The paradigm pretrains a shared model on large volumes of unlabeled data and achieves state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the speech processing community lacks a similar setup to systematically explore the paradigm. To bridge this gap, we introduce Speech processing Universal PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data. Among multiple usages of the shared model, we especially focus on extracting the representation learned from SSL due to its preferable re-usability. We present a simple framework to solve SUPERB tasks by learning task-specialized lightweight prediction heads on top of the frozen shared model. Our results demonstrate that the framework is promising as SSL representations show competitive generalizability and accessibility across SUPERB tasks. We release SUPERB as a challenge with a leaderboard 1 and a benchmark toolkit 2 to fuel the research in representation learning and general speech processing.
Automatic speaker verification (ASV) is one of the core technologies in biometric identification. With the ubiquitous usage of ASV systems in safety-critical applications, more and more malicious attackers attempt to launch adversarial attacks at ASV systems. In the midst of the arms race between attack and defense in ASV, how to effectively improve the robustness of ASV against adversarial attacks remains an open question. We note that the self-supervised learning models possess the ability to mitigate superficial perturbations in the input after pretraining. Hence, with the goal of effective defense in ASV against adversarial attacks, we propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations. Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks in scenarios where attackers may either be aware or unaware of the self-supervised learning models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.