A new approach has been developed to probe the structural properties of membrane peptides and proteins using the pulsed electron paramagnetic resonance technique of electron spin echo envelope modulation (ESEEM) spectroscopy and the a-helical M2d subunit of the acetylcholine receptor incorporated into phospholipid bicelles. To demonstrate the practicality of this method, a cysteine-mutated nitroxide spin label (SL) is positioned 1, 2, 3, and 4 residues away from a fully deuterated Val side chain (denoted i 1 1 to i 1 4). The characteristic periodicity of the a-helical structure gives rise to a unique pattern in the ESEEM spectra. In the i 1 1 and i 1 2 samples, the 2
Escherichia coli Endonuclease III (EndoIII) and MutY are DNA glycosylases that contain [4Fe4S] clusters and that serve to maintain the integrity of the genome after oxidative stress. Electrochemical studies on highly-oriented pyrolytic graphite (HOPG) revealed that DNA binding by EndoIII leads to a large negative shift in midpoint potential of the cluster, consistent with stabilization of the oxidized [4Fe4S]3+ form. However, the smooth, hydrophobic HOPG surface is non-ideal for working with proteins in the absence of DNA. In this work, we use thin film voltammetry on a pyrolytic graphite edge electrode to overcome these limitations. Improved adsorption leads to substantial signals for both EndoIII and MutY in the absence of DNA, and a large negative potential shift is retained with DNA present. In contrast, the EndoIII mutants E200K, Y205H, and K208E, which provide electrostatic perturbations in the vicinity of the cluster, all show DNA-free potentials within error of wild type; similarly, the presence of negatively charged poly-L glutamate does not lead to a significant potential shift. Overall, binding to the DNA polyanion is the dominant effect in tuning the redox potential of the [4Fe4S] cluster, helping to explain why all DNA-binding proteins with [4Fe4S] clusters studied to date have similar DNA-bound potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.