The assumption of symmetry is often incorrect in real-life statistical modeling due to asymmetric behavior in the data. This implies a departure from the well-known assumption of normality defined for innovations in time series processes. In this paper, the autoregressive (AR) process of order p (i.e., the AR(p) process) is of particular interest using the skew generalized normal (SGN) distribution for the innovations, referred to hereafter as the ARSGN(p) process, to accommodate asymmetric behavior. This behavior presents itself by investigating some properties of the SGN distribution, which is a fundamental element for AR modeling of real data that exhibits non-normal behavior. Simulation studies illustrate the asymmetry and statistical properties of the conditional maximum likelihood (ML) parameters for the ARSGN(p) model. It is concluded that the ARSGN(p) model accounts well for time series processes exhibiting asymmetry, kurtosis, and heavy tails. Real time series datasets are analyzed, and the results of the ARSGN(p) model are compared to previously proposed models. The findings here state the effectiveness and viability of relaxing the normal assumption and the value added for considering the candidacy of the SGN for AR time series processes.
Analysing autoregressive counts over time remains a relevant and evolving matter of interest, where oftentimes the assumption of normality is made for the error terms. In the case when data are discrete, the Poisson model may be assumed for the structure of the error terms. In order to address the equidispersion restriction of the Poisson distribution, various alternative considerations have been investigated in such an integer environment. This paper, inspired by the integer autoregressive process of order 1, incorporates negative binomial shape mixtures via a compound Poisson Lindley model for the error terms. The systematic construction of this model is offered and motivated, and is analysed comparatively against common alternate candidates with a number of simulation and data analyses. This work provides insight into noncentral-type behaviour in both the continuous Lindley model and in the discrete case for meaningful application and consideration in integer autoregressive environments.
This paper proposes a previously unconsidered generalization of the Lindley distribution by allowing for a measure of noncentrality. Essential structural characteristics are investigated and derived in explicit and tractable forms, and the estimability of the model is illustrated via the fit of this developed model to real data. Subsequently, this model is used as a candidate for the parameter of a Poisson model, which allows for departure from the usual equidispersion restriction that the Poisson offers when modelling count data. This Poisson-noncentral Lindley is also systematically investigated and characteristics are derived. The value of this count model is illustrated and implemented as the count error distribution in an integer autoregressive environment, and juxtaposed against other popular models. The effect of the systematically-induced noncentrality parameter is illustrated and paves the way for future flexible modelling not only as a standalone contender in continuous Lindley-type scenarios but also in discrete and discrete time series scenarios when the often-encountered equidispersed assumption is not adhered to in practical data environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.