The fmtA gene is a member of the Staphylococcus aureus core cell wall stimulon. The FmtA protein interacts with -lactams through formation of covalent species. Here, we show that FmtA has weak D-Ala-D-Ala-carboxypeptidase activity and is capable of covalently incorporating C14-Gly into cell walls. The fluorescence microscopy study showed that the protein is localized to the cell division septum. Furthermore, we show that wall teichoic acids interact specifically with FmtA and mediate recruitment of
The methicillin resistance factor encoded by fmtA is a core member of the Staphylococcus aureus cell wall stimulon, but its function has remained elusive for the past two decades. First identified as a factor that affects methicillin resistance in S. aureus strains, FmtA was later shown to interact with teichoic acids and to localize to the cell division septum. We have made a breakthrough in understanding FmtA function. We show that FmtA hydrolyzes the ester bond between d-Ala and the backbone of teichoic acids, which are polyglycerol-phosphate or polyribitol-phosphate polymers found in the S. aureus cell envelope. FmtA contains two conserved motifs found in serine active-site penicillin-binding proteins (PBPs) and β-lactamases. The conserved SXXK motif was found to be important for the d-amino esterase activity of FmtA. Moreover, we show that deletion of fmtA (ΔfmtA) led to higher levels of d-Ala in teichoic acids, and this effect was reversed by complementation of ΔfmtA with fmtA. The positive charge on d-Ala partially masks the negative charge of the polyol-phosphate backbone of teichoic acids; hence, a change in the d-Ala content will result in modulation of their charge. Cell division, biofilm formation, autolysis, and colonization are among the many processes in S. aureus affected by the d-Ala content and overall charge of the cell surface teichoic acids. The esterase activity of FmtA and the regulation of fmtA suggest that FmtA functions as a modulator of teichoic acid charge, thus FmtA may be involved in S. aureus cell division, biofilm formation, autolysis, and colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.