Hyperspectral cameras provide unique spectral signatures that can be used to solve surveillance tasks. This paper proposes a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. We focus on the target detection part of a tracking system and remove the necessity to build any offline classifiers and tune large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.
Hyperspectral imaging holds enormous potential to improve the state-of-the-art in aerial vehicle tracking with low spatial and temporal resolutions. Recently, adaptive multi-modal hyperspectral sensors have attracted growing interest due to their ability to record extended data quickly from aerial platforms. In this study, we apply popular concepts from traditional object tracking, namely (1) Kernelized Correlation Filters (KCF) and (2) Deep Convolutional Neural Network (CNN) features to aerial tracking in hyperspectral domain. We propose the Deep Hyperspectral Kernelized Correlation Filter based tracker (DeepHKCF) to efficiently track aerial vehicles using an adaptive multi-modal hyperspectral sensor. We address low temporal resolution by designing a single KCF-in-multiple Regions-of-Interest (ROIs) approach to cover a reasonably large area. To increase the speed of deep convolutional features extraction from multiple ROIs, we design an effective ROI mapping strategy. The proposed tracker also provides flexibility to couple with the more advanced correlation filter trackers. The DeepHKCF tracker performs exceptionally well with deep features set up in a synthetic hyperspectral video generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software. Additionally, we generate a large, synthetic, single-channel dataset using DIRSIG to perform vehicle classification in the Wide Area Motion Imagery (WAMI) platform. This way, the high-fidelity of the DIRSIG software is proved and a large scale aerial vehicle classification dataset is released to support studies on vehicle detection and tracking in the WAMI platform.
We investigate modifying convolutional neural network (CNN) architecture to facilitate aerial hyperspectral scene understanding and present a new hyperspectral dataset-AeroRITthat is large enough for CNN training. To date the majority of hyperspectral airborne have been confined to various subcategories of vegetation and roads and this scene introduces two new categories: buildings and cars. To the best of our knowledge, this is the first comprehensive large-scale hyperspectral scene with nearly seven million pixel annotations for identifying cars, roads, and buildings. We compare the performance of three popular architectures -SegNet, U-Net, and Res-U-Net, for scene understanding and object identification via the task of dense semantic segmentation to establish a benchmark for the scene. To further strengthen the network, we add squeeze and excitation blocks for better channel interactions and use self-supervised learning for better encoder initialization. Aerial hyperspectral image analysis has been restricted to small datasets with limited train/test splits capabilities and we believe that AeroRIT will help advance the research in the field with a more complex object distribution to perform well on. The full dataset, with flight lines in radiance and reflectance domain, is available for download at https://github.com/aneesh3108/AeroRIT. This dataset is the first step towards developing robust algorithms for hyperspectral airborne sensing that can robustly perform advanced tasks like vehicle tracking and occlusion handling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.