Proof schemata are infinite sequences of proofs which are defined inductively. In this paper we present a general framework for schemata of terms, formulas and unifiers and define a resolution calculus for schemata of quantifier-free formulas. The new calculus generalizes and improves former approaches to schematic deduction. As an application of the method we present a schematic refutation formalizing a proof of a weak form of the pigeon hole principle.
This paper develops a general methodology to connect propositional and first-order interpolation. In fact, the existence of suitable skolemizations and of Herbrand expansions together with a propositional interpolant suffice to construct a first-order interpolant. This methodology is realized for lattice-based finitely-valued logics, the top element representing true. It is shown that interpolation is decidable for these logics.
We define a new method for proof mining by CERES (cut-elimination by resolution) that is concerned with the extraction of expansion trees in first-order logic (see Miller in Stud Log 46(4):347-370, 1987) with equality. In the original CERES method expansion trees can be extracted from proofs in normal form (proofs without quantified cuts) as a postprocessing of cut-elimination. More precisely they are extracted from an ACNF, a proof with at most atomic cuts. We define a novel method avoiding proof normalization and show that expansion trees can be extracted from the resolution refutation and the corresponding proof projections. We prove that the new method asymptotically outperforms the standard method (which first computes the ACNF and then extracts an expansion tree). Finally we compare an implementation of the new method with the old one; it turns out that the new method is also more efficient in our experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.