Abstract-Random coding of channel decoding with an erasure option is studied. By analyzing the large deviations behavior of the code ensemble, we obtain exact single-letter formulas for the error exponents in lieu of Forney's lower bounds. The analysis technique we use is based on an enhancement and specialization of tools for assessing the moments of certain distance enumerators. We specialize our results to the setup of the binary symmetric channel case with uniform random coding distribution and derive an explicit expression for the error exponent which, unlike Forney's bounds, does not involve optimization over two parameters. We also establish the fact that for this setup, the difference between the exact error exponent corresponding to the probability of undetected decoding error and the exponent corresponding to the erasure event is equal to the threshold parameter. Numerical calculations indicate that for this setup, as well as for a Z-channel, Forney's bound coincides with the exact random coding exponent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.