Optimal placement of Charging stations (CSs) and infrastructure planning are one of the most critical challenges that face the Electric Vehicles (EV) industry nowadays. A variety of approaches have been proposed to address the problem of demand uncertainty versus the optimal number of CSs required to build the EV infrastructure. In this paper, a Markov-chain network model is designed to study the estimated demand on a CS by using the birth and death process model. An investigation on the desired number of electric sockets in each CS and the average number of electric vehicles in both queue and waiting times is presented. Furthermore, a CS allocation algorithm based on the Markov-chain model is proposed. Grey Wolf Optimization (GWO) algorithm is used to select the best CS locations with the objective of maximizing the net profit under both budget and routing constraints. Additionally, the model was applied to Washington D.C. transportation network. Experimental results have shown that to achieve the highest net profit, Level 2 chargers need to be installed in low demand areas of infrastructure implementation. On the other hand, Level 3 chargers attain higher net profit when the number of EVs increases in the transportation network or/and in locations with high charging demands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.