This paper presents a research on ash-related problems and emissions during co-firing low-rank Bosnian coals with different kinds of biomass; in this case woody sawdust and herbaceous energy crops Miscanthus. An entrained-flow drop tube furnace was used for the tests, varying fuel portions at a high co-firing ratio up to 30%wt woody sawdust and 10%wt Miscanthus in a fuel blend. The tests were supposed to optimize the process temperature, air distribution (including OFA) and fuel distributions (reburning) as function of SO 2 and NO x emissions as well as efficiency of combustion process estimated through the ash deposits behaviors, CO emissions and unburnt. The results for 12 co-firing fuel combinations impose a reasonable expectation that the coal/biomass/Miscanthus blends could be successfully run under certain conditions not producing any serious ash-related problems. SO 2 emissions were slightly higher when higher content of woody biomass was used. Oppositely, higher Miscanthus percentage in the fuel mix slightly decreases SO 2 emissions. NO x emissions generally decrease with an increase of biomass co-firing rate. The study suggests that co-firing Bosnian coals with woody sawdust and Miscanthus shows promise at higher co-firing ratios for pulverized combustion, giving some directions for further works in co-firing similar multi-fuel combinations.
This paper presents the findings of research into cofiring two Bosnian cola types, brown coal and lignite, with woody biomass, in this case spruce sawdust. The aim of the research was to find the optimal blend of coal and sawdust that may be substituted for 100% coal in large coal-fired power stations in Bosnia and Herzegovina. Two groups of experimental tests were performed in this study: laboratory testing of co-firing and trial runs on a large-scale plant based on the laboratory research results. A laboratory experiment was carried out in an electrically heated and entrained pulverized-fuel flow furnace. Coal-sawdust blends of 93:7% by weight and 80:20% by weight were tested. Co-firing trials were conducted over a range of the following process variables: process temperature, excess air ratio and air distribution. Neither of the two coal-sawdust blends used produced any significant ash-related problems provided the blend volume was 7% by weight sawdust and the process temperature did not exceed 1250ºC. It was observed that in addition to the nitrogen content in the co-fired blend, the volatile content and particle size distribution of the mixture also influenced the level of NOx emissions. The brown coal-sawdust blend generated a further reduction of SO2 due to the higher sulphur capture rate than for coal alone. Based on and following the laboratory research findings, a trial run was carried out in a large-scale utility - the Kakanj power station, Unit 5 (110 MWe), using two mixtures; one in which 5%/wt and one in which 7%/wt of brown coal was replaced with sawdust. Compared to a reference firing process with 100% coal, these co-firing trials produced a more intensive redistribution of the alkaline components in the slag in the melting chamber, with a consequential beneficial effect on the deposition of ash on the superheater surfaces of the boiler. The outcome of the tests confirms the feasibility of using 7%wt of sawdust in combination with coal without risk to the efficiency of the unit, its combustion process and with the benefits of emissions reductions. Furthermore, they show that no modification to the existing coal transport system and boiler equipment is necessary to achieve this outcome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.