Spiraling into control: A photoresponsive supramolecular assembly demonstrates that light, along with heating (Δ) and cooling (), can cause chiral communication between molecules. This effect leads to bias in the helicity of the complex, causing a reversible switching of macroscopic handedness, as shown by a reversal of sign of the circularly polarized luminescence (CPL) that is emitted.
Oligo(thienylenevinylene) (OTV) based gelators with high conductivity are reported. When compared to OTV1, OTV2 having an increased conjugation length forms relatively strong gels with a metallic conductivity of 4.8 S/cm upon doping which is the highest value reported for an organogelator. This new class of conducting gels is expected to be useful for organic electronics and photonics application, particularly for bulk heterojunction devices.
A sugar-based photoresponsive supergelator, N-glycosylazobenzene that shows selective gelation of aromatic solvents is described. The partial trans-cis isomerization of the azobenzene moiety allows photoinduced chopping of the entangled gel fibers to short fibers, resulting in controlled fiber length and gel-sol transition. The gelator is useful for the selective removal of toxic aromatic solvents from water.
Ostwald ripening allows the synthesis of 1D nanorods of metal and semiconductor nanoparticles. However, this phenomenon is unsuccessful with organic π-systems due to their spontaneous self-assembly to elongated fibers or tapes. Here we demonstrate the uses of light as a versatile tool to control the ripening of amorphous organic nanodots (ca. 15 nm) of an azobenzene-derived molecular assembly to micrometer-sized supramolecular rods. A surface-confined dipole variation associated with a low-yield (13-14%) trans-cis isomerization of the azobenzene moiety and the consequent dipole-dipole interaction in a nonpolar solvent is believed to be the driving force for the ripening of the nanodots to rods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.