The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest stem cells (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), including their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to truly differentiate into Tuj1-positive cells when co-cultivated with paraformaldehyde-fixed cerebellar granule neurons. Altogether, those results suggest that both NCSC and MSC can be considered as important tools for cellular therapies in order to replace neurons in various neurological diseases.
Running title:Characterization of neural crest and mesenchymal stem cells from adult bone marrow
Author contribution:SWG : conception -design -collection of data -data analysis -manuscript writing EL : collection of data -data analysis -final approval of manuscript PA : collection of data VN : collection of data AG : collection of data CP : collection of data -data analysis -manuscript writing BH : collection of data -data analysis OS : Provision of study material LS : Provision of study material -final approval of manuscript PL: design-collection of data -data analysis -final approval of manuscript BR : Conception -design -Financial support -data analysis -final approval of manuscript
Key wordsNeural crest stem cells; mesenchymal stem cells; adult bone marrow; cell fate; microarray ABSTRACT The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to t...
Recent studies have shown that neural crest-derived progenitor cells can be found in diverse mammalian tissues including tissues that were not previously shown to contain neural crest derivatives, such as bone marrow. The identification of those "new" neural crest-derived progenitor cells opens new strategies for developing autologous cell replacement therapies in regenerative medicine. However, their potential use is still a challenge as only few neural crest-derived progenitor cells were found in those new accessible locations. In this study, we developed a protocol, based on wnt1 and BMP2 effects, to enrich neural crest-derived cells from adult bone marrow. Those two factors are known to maintain and stimulate the proliferation of embryonic neural crest stem cells, however, their effects have never been characterized on neural crest cells isolated from adult tissues. Using multiple strategies from microarray to 2D-DIGE proteomic analyses, we characterized those recruited neural crest-derived cells, defining their identity and their differentiating abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.