The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. the marker of fatty acid β-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of β-oxidation. The longest, OADHpreferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism. 2-Oxo acid dehydrogenase complexes comprise a family of multimeric enzymes functioning at the intersections of metabolic pathways involving carbohydrates, lipids and amino acids 1. The family includes the well-characterized 2-oxoglutarate dehydrogenase complex (OGDHC), which couples the tricarboxylic acid (TCA) cycle with degradation of amino acids of the 2-oxoglutarate group, namely, glutamate, glutamine, arginine, histidine, and proline. The substrate-specific 2-oxoglutarate dehydrogenase (OGDH, EC 1.2.4.1, encoded by the OGDH gene, also known as E1o component of the complex), is a well-known and rate-limiting component of OGDHC. The complex also comprises two other types of enzymes: E2o (EC 2.3.1.61) and E3 (EC 1.8.1.4), encoded by the dihydrolipoamide succinyltransferase (DLST) and dihydrolipoamide dehydrogenase (DLD) genes, respectively. Multiple copies of the E1, E2 and E3 component enzymes form multienzyme complexes schematically exemplified in Fig. 1A. The multimeric structure allows effective coupling of the 2-oxoglutarate oxidative decarboxylation
Coumarins are a group of naturally occurring compounds common in the plant world. These substances and their derivatives exhibit a broad range of biological activities.One of the naturally occurring coumarins is osthole, which can most frequently be found in plants of the Apiaceae family. Cnidium monnieri (L.) Cusson ex Juss. Angelica pubescens Maxim. and Peucedanum ostruthium (L.). It has anti-proliferative, anti-inflammatory, anti-convulsant, and antiallergic properties; apart from that, inhibition of platelet aggregation has also been proved. The impact of osthole on bone metabolism has been demonstrated; also its hepatoprotective and neuroprotective properties have been confirmed. The inhibitory effect of this metokcompound on the development of neurodegenerative diseases has been proved in experimental models. Anticancer features of osthole have been also demonstrated both in vitro on different cell lines, and in vivo using animals xenografts. Osthole inhibited proliferation, motility and invasiveness of tumor cells, which may be associated with the induction of apoptosis and cell cycle slowdown. The exact molecular mechanism of osthole anti-cancer mode of action has not been fully elucidated. A synergistic effect of osthole with other anti-tumor substances has been also reported. Modification of its chemical structure led to the synthesis of many derivatives with significant anticancer effects.To sum up, osthole is an interesting therapeutic option, due to both its direct effect on tumor cells, as well as its neuroprotective or anti-inflammatory properties. Thus, there is a chance to use osthole or its synthetic derivatives in the treatment of cancer.
Naturally occurring coumarins are bioactive compounds widely used in Asian traditional medicine. They have been shown to inhibit proliferation, induce apoptosis, and/or enhance the cytotoxicity of currently used drugs against a variety of cancer cell types. The aim of our study was to examine the antiproliferative activity of different linear furanocoumarins on human rhabdomyosarcoma, lung, and larynx cancer cell lines, and dissolve their cellular mechanism of action. The coumarins were isolated from fruits of Angelica archangelica L. or Pastinaca sativa L., and separated using high-performance counter-current chromatography (HPCCC). The identity and purity of isolated compounds were confirmed by HPLC-DAD and NMR analyses. Cell viability and toxicity assessments were performed by means of methylthiazolyldiphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, respectively. Induction of apoptosis and cell cycle progression were measured using flow cytometry analysis. qPCR method was applied to detect changes in gene expression. Linear furanocoumarins in a dose-dependent manner inhibited proliferation of cancer cells with diverse activity regarding compounds and cancer cell type specificity. Imperatorin (IMP) exhibited the most potent growth inhibitory effects against human rhabdomyosarcoma and larynx cancer cell lines owing to inhibition of the cell cycle progression connected with specific changes in gene expression, including CDKN1A. As there are no specific chemotherapy treatments dedicated to laryngeal squamous cell carcinoma and rhabdomyosarcoma, and IMP seems to be non-toxic for normal cells, our results could open a new direction in the search for effective anti-cancer agents.
The aim of the present study was to determine the composition, antiradical and antimicrobial activity of fruits, leaves and roots of an underestimated species of barberry—Berberis iliensis—growing in Kazakhstan. Particular attention was paid to the determination of the composition of its extracts by high-performance liquid chromatography coupled with mass spectrometry (HPLC-ESI-Q-TOF-MS) analysis. As a result of the chromatographic and spectrometric study 33 secondary metabolites from the groups of phenolic acids and their esters, flavonoids, alkaloids and organic acids were identified and 15 of them—quantified. The isomers of caffeoyl-glucaric acid, caffeic acid derivatives, isoquercetin, berberine and jatrorrhizine were the most abundant components of the tested extracts. The antiradical activity tests were performed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu assays on four types of extracts (water, ethanol, ethanol-water 7:3 v/v, ethanol-water 1:1 v/v) from the three organs of the plant. The highest antiradical potential (IC50 = 80 ± 6.36 µg/mL) and phenolic content (440 ± 17.1 mg gallic acid equivalents/L) was calculated for ethanol- water (1:1 v/v) extracts from the leaves and could be influenced by the abundant presence of simple phenolic acids, flavonoids and glucaric acid esters. Among reference microorganisms, M. luteus, S. epidermidis, some S. aureus and B. cereus belonging to Gram-positive bacteria and yeasts from Candida species were the most sensitive to roots extract that was found the most active among the studied samples. The results of the study classify Berberis iliensis as a strong antioxidant agent and as a plant with an antimicrobial potential.
Introduction: Carotid endarterectomy (CEA) is a surgical procedure used in the prevention of ischemic stroke. However, this procedure can cause complications of ischemia-reperfusion injury to the brain. Clusterin (CLU) is a cytoprotective chaperone protein that is released from neurons in response to various neurological injuries. The objective of the study was to report the changes in serum CLU concentrations of patients undergoing CEA.Materials and methods: The study involved 25 patients with severe internal carotid artery stenosis. Serum samples were taken from patients at three different times: within 24 hours preoperatively to CEA, 12 hours postoperatively, and 48 hours postoperatively. Serum CLU concentrations were measured using a commercially available enzyme-linked immunosorbent assay.Results: When compared to concentrations preoperatively, the serum CLU concentration initially decreased during the 12 hours following CEA. However, 48 hours following the procedure there was an increase in the CLU concentration. After statistical analysis, differences were detected in serum CLU concentration between all three recorded measurements (P < 0.05).Conclusion: Data from our study indicate that serum CLU concentrations are affected after CEA. We hypothesize that serum CLU concentrations may depend on brain ischemia-reperfusion injury following this surgical procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.