Abstract:Monitoring of the human-induced changes and the availability of reliable and methodologically consistent urban area maps are essential to support sustainable urban development on a global scale. The Global Human Settlement Layer (GHSL) is a project funded by the European Commission, Joint Research Centre, which aims at providing scientific methods and systems for reliable and automatic mapping of built-up areas from remote sensing data. In the frame of the GHSL, the opportunities offered by the recent availability of Sentinel-2 data are being explored using a novel image classification method, called Symbolic Machine Learning (SML), for detailed urban land cover mapping. In this paper, a preliminary test was implemented with the purpose of: (i) assessing the applicability of the SML classifier on Sentinel-2 imagery; (ii) evaluating the complementarity of Sentinel-1 and Sentinel-2; and (iii) understanding the added-value of Sentinel-2 with respect to Landsat for improving global high-resolution human settlement mapping. The overall objective is to explore areas of improvement, including the possibility of synergistic use of the different sensors. The results showed that noticeable improvement of the quality of the classification could be gained from the increased spatial detail and from the thematic contents of Sentinel-2 compared to the Landsat derived product as well as from the complementarity between Sentinel-1 and Sentinel-2 images.
This paper presents the analysis of Earth Observation data records collected between 1975 and 2014 for assessing the extent and temporal evolution of the built-up surface in the frame of the Global Human Settlement Layer project. The scale of the information produced by the study enables the assessment of the whole continuum of human settlements from rural hamlets to megacities. The study applies enhanced processing methods as compared to the first production of the GHSL baseline data. The major improvements include the use of a more refined learning set on built-up areas derived from Sentinel-1 data which allowed testing the added-value of incremental learning in big data analytics. Herein, the new features of the GHSL built-up grids and the methods are described and compared with the previous ones using a reference set of building footprints for 277 areas of interest. The results show a gradual improvement in the accuracy measures with a gain of 3.6% in the balanced accuracy, between the first production of the GHSL baseline and the latest GHSL multitemporal built-up grids. A validation of the multitemporal component is also conducted at the global scale establishing the reliability of the built-up layer across time.
Continuous global-scale mapping of human settlements in the service of international agreements calls for massive volume of multi-source, multi-temporal, and multi-scale earth observation data. In this paper, the latest developments in terms of processing big earth observation data for the purpose of improving the Global Human Settlement Layer (GHSL) data are presented. Two experiments with Sentinel-1 and Landsat data collections were run leveraging on the Joint Research Centre Earth Observation Data and Processing Platform. A comparative analysis of the results of built-up areas extraction from different remote sensing data and processing workflows shows how the information production supported by data-intensive computing infrastructure for optimization and multiple testing can improve the output information reliability and consistency within the GHSL scope. The paper presents the processing workflows and the results of the two main experiments, giving insights into the enhanced mapping capabilities gained by analyzing Sentinel-1 and Landsat data-sets, and the lessons learnt in terms of handling and processing big earth observation data.
The Global Human Settlement Layer (GHSL) produces new global spatial information, evidence-based analytics describing the human presence on the planet that is based mainly on two quantitative factors: (i) the spatial distribution (density) of built-up structures and (ii) the spatial distribution (density) of resident people. Both of the factors are observed in the long-term temporal domain and per unit area, in order to support the analysis of the trends and indicators for monitoring the implementation of the 2030 Development Agenda and the related thematic agreements. The GHSL uses various input data, including global, multi-temporal archives of high-resolution satellite imagery, census data, and volunteered geographic information. In this paper, we present a global estimate for the Land Use Efficiency (LUE) indicator—SDG 11.3.1, for circa 10,000 urban centers, calculating the ratio of land consumption rate to population growth rate between 1990 and 2015. In addition, we analyze the characteristics of the GHSL information to demonstrate how the original frameworks of data (gridded GHSL data) and tools (GHSL tools suite), developed from Earth Observation and integrated with census information, could support Sustainable Development Goals monitoring. In particular, we demonstrate the potential of gridded, open and free, local yet globally consistent, multi-temporal data in filling the data gap for Sustainable Development Goal 11. The results of our research demonstrate that there is potential to raise SDG 11.3.1 from a Tier II classification (manifesting unavailability of data) to a Tier I, as GHSL provides a global baseline for the essential variables called by the SDG 11.3.1 metadata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.