BackgroundDespite the undisputed public health benefits of routine vaccination, adverse events following immunisation (AEFI) remain a concern. As most adverse events are mild, they may be under-reported; this may underlie the wide range of AEFI rates reported in the literature. We investigated the rates of AEFI related to routine vaccination of children 0–10 years old in the Czech Republic.MethodsThe study reviewed patients’ records in a sample of 49 paediatric GP practices covering all 12 administrative regions of the Czech Republic between 2011 and 2013. Adverse events following routine immunisation of children aged 0–10 years were identified and recorded.ResultsThe overall rate of AEFI was 209/100,000 doses; this was 6 times higher than the rate reported to the Czech State Institute for Drug Control (34/100,000 doses). Over two fifths (44%) of all AEFI occurred after the booster dose of the combined diphteria, tetanus and pertussis vaccine in 5-year old children. The vast majority of AEFI were non-serious local events (e.g. redness) and fever. Most AEFI occurred the second day after the immunisation, lasted 4 days on average, and were treated by cold therapy, antipyretics and analgesics.ConclusionsThe rate of AEFI identified in this study was considerably higher than the officially reported rate. Although the vast majority of AEFI were non-serious, health care providers and the public should be educated and encouraged to report AEFI to address the issue of underreporting, to increase the safety profile of vaccines, and to improve public confidence in immunisation programmes.
Adenylate cyclase toxin (CyaA) is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC) enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR)-activated murine and human dendritic cells (DCs). cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4+ and CD8+ T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4+CD25+Foxp3+ T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8+ T cell proliferation and limited the induction of IFN-γ producing CD8+ T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.
A novel type of oligonucleotide has been developed, characterized by the attachment of a lysyl moiety to a 2'-O-aminohexyl linker. A protected lysine building block was tethered to 2'-O-aminohexyluridine, and the product was converted into the corresponding phosphoramidite. Up to six modified nucleosides were incorporated in dodecamer DNA and RNA oligonucleotides using standard phosphoramidite chemistry. Each of the building blocks contributes one positive charge to the oligonucleotide instead of the negative charge of a wild-type nucleotide. Thermal denaturation profiles indicated a stabilizing effect of 2'-O-lysylaminohexyl chains that was more pronounced in RNA duplexes. Incubation of the oligonucleotides with 5'-exonuclease revealed an exceptionally high stability against enzymatic degradation. Incorporation of up to three modifications into functional antisense and siRNA oligonucleotides targeted at ICAM-1 showed that the gene-silencing activity was higher with an increasing number of lysylaminohexyl nucleotides. Compared with wild-type antisense or siRNA, compounds with three modifications led to equal or higher ICAM-1 downregulation.
Vaccination is defined as the administration of an antigenic material in order to stimulate the immune system, leading to the development of adaptive immunity to a pathogen. Vaccines can prevent or reduce morbidity from a vast number of infections. This manuscript presents an analysis of vaccine types and vaccine substances, concentrating on individual components including the active ingredient, adjuvants, preservatives, stabilizers, inactivators, antibiotics, diluents and other substances. While many papers have been published on individual vaccine components, this review provides detail on a wide range of the most commonly-used vaccine ingredients and components that have been tested in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.