The use of electron paramagnetic resonance spectroscopy to study the superoxide intermediates, generated by end-on and side-on adsorption of the naturally abundant and 17 O-enriched dioxygen on catalytic surfaces is discussed. Basic mechanisms of O 2 -radical formation via a cationic redox mechanism, an anionic redox mechanism, and an electroprotic mechanism are illustrated with selected oxide-based systems of catalytic relevance. Representative experimental spectra of various complexities are analyzed and their diagnostic features have been identified and interpreted. The molecular nature of the g and A tensors of the electrostatic and covalent superoxide adducts is discussed in detail within the classic and density functional theory based approaches.
The purpose of this study was to investigate a correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity in vitro. A series of Ru(II)...
A series of mixed cobalt spinel catalysts (MxCo3−xO4 (M = Cr, Fe, Mn, Ni, Cu, Zn)) was synthesized and tested in the CO-PROX reaction and in sole CO oxidation and H2 oxidation as references.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.