ObjectiveOxytocin (OT) has been implicated to play an important role in autism spectrum disorders (ASD) etiology. We aimed to find out the differences in plasma OT levels between children with autism and healthy children, the associations of OT levels with particular autism symptoms and the associations of particular parental autistic traits with their ASD children OT levels.MethodsWe included 19 boys with autism and 44 healthy age-matched boys. OT levels were analyzed by ELISA method. Children with autism were scored by Childhood Autism Rating Scale and Autism Diagnostic Interview (ADI), adjusted research version. Autism Spectrum Quotient (AQ), Systemizing Quotient (SQ) and Empathizing Quotient were completed by parents of children with autism.ResultsChildren with autism had significantly lower plasma OT levels than controls. OT levels positively correlated with ADI Reciprocal Interaction and Communication scores. AQ and SQ of fathers positively correlated with children plasma OT level.ConclusionOur results support the hypothesis of OT deficiency in autism. The "paradoxical" associations of OT levels and social skills in children with autism indicate disturbances at various levels of OT system. We first reported associations of OT levels in children with autism and behavioral measures in fathers indicating that OT abnormalities stay between parental autistic traits and autism symptoms in their children.
Autism is one of the most genetically influenced neuropsychiatric disorders. However, its detailed genetic basis is far from being clear. Genome-wide association studies have revealed a number of candidate genes, mostly related to synaptogenesis and various neuroendocrine pathways. In our study we have focused on oxytocin (OT), oxytocin receptor (OXTR), GABA receptor gamma 3 (GABRG3), neuroligin (NLGN4X), and reelin (RELN). After signed consent, 90 autistic boys and 85 healthy controls were enrolled in the study. Polymorphisms of OT (rs2740204), OXTR (rs2228485), GABRG3 (rs28431127), and NLGN4X (rs5916338) were analyzed using restriction fragment length polymorphism. (GGC)n STR polymorphism in the 5' UTR of the RELN gene was genotyped using fragment analysis. The only significant association in autistic boys in Slovakia was found with higher number of GGC repeats in the RELN gene (P=0.001) potentially explaining lower RELN levels in blood and brain of autistic patients.
IntroductionAutism spectrum disorders (ASD) and hyperactivity symptoms exhibit an incidence that is male-biased. Thus androgen activity can be considered a plausible biological risk factor for these disorders. However, there is insufficient information about the association between increased androgen activity and hyperactivity symptoms in children with ASD.MethodsIn the present study, the relationship between parameters of androgenicity (plasmatic testosterone levels and androgen receptor sensitivity) and hyperactivity in 60 boys (age 3–15) with ASD is investigated. Given well documented differences in parent and trained examiners ratings of symptom severity, we employed a standardized parent`s questionnaire (Nisonger Child Behavior Rating Form) as well as a direct examiner`s rating (Autism diagnostic observation schedule) for assessment of hyperactivity symptoms.ResultsAlthough it was found there was no significant association between actual plasmatic testosterone levels and hyperactivity symptoms, the number of CAG triplets was significantly negatively correlated with hyperactivity symptoms (R2 = 0.118, p = 0.007) in the sample, indicating increased androgen receptor sensitivity in association with hyperactivity symptoms. Direct trained examiner´s assessment appeared to be a relevant method for evaluating of behavioral problems in the investigation of biological underpinnings of these problems in our study.ConclusionsA potential ASD subtype characterized by increased rates of hyperactivity symptoms might have distinct etiopathogenesis and require a specific behavioral and pharmacological approach. We propose an increase of androgen receptor sensitivity as a biomarker for a specific ASD subtype accompanied with hyperactivity symptoms. Findings are discussed in terms of their implications for practice and future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.