Immunocompetent cells including lymphocytes play a key role in the development of adipose tissue inflammation and obesity-related cardiovascular complications. The aim of the study was to explore the relationship between epicardial adipose tissue lymphocytes and coronary artery disease (CAD). To this end, we studied the content and phenotype of lymphocytes in peripheral blood, subcutaneous adipose tissue (SAT), and epicardial adipose tissue (EAT) in subjects with and without CAD undergoing elective cardiac surgery. Eleven subjects without CAD (non-CAD group) and 22 age-, BMI-, and HbA1C-matched individuals with CAD were included into the study. Blood, SAT, and EAT samples were obtained at the beginning of surgery. Lymphocyte populations were quantified as % of CD45+ cells using flow cytometry. Subjects with CAD had a higher total lymphocyte amount in EAT compared with SAT (32.24±7.45 vs. 11.22±1.34%, p=0.025) with a similar trend observed in non-CAD subjects (29.68±7.61 vs. 10.13±2.01%, p=0.067). T (CD3+) cells were increased (75.33±2.18 vs. 65.24±4.49%, p=0.032) and CD3- cells decreased (21.17±2.26 vs. 31.64±4.40%, p=0.028) in EAT of CAD relative to the non-CAD group. In both groups, EAT showed an elevated percentage of B cells (5.22±2.43 vs. 0.96±0.21%, p=0.039 for CAD and 12.49±5.83 vs. 1.16±0.19%, p=0.016 for non-CAD) and reduced natural killer (NK) cells (5.96±1.32 vs. 13.22±2.10%, p=0.012 for CAD and 5.32±1.97 vs. 13.81±2.72%, p=0.022 for non-CAD) relative to SAT. In conclusion, epicardial adipose tissue in subjects with CAD shows an increased amount of T lymphocytes relative to non-CAD individuals as well as a higher number of total and B lymphocytes and reduced NK cells as compared with corresponding SAT. These changes could contribute to the development of local inflammation and coronary atherosclerosis.
Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase‐separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer‐supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two‐phase kinetics (depot maturation, slow redissolution) with half‐lives 2 weeks to 5 months, as depot vitrification prolonged their half‐lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two‐phase kinetics (depot maturation and slow dissolution), with half‐lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.