p38alpha is a stress-activated protein kinase that negatively regulates malignant transformation induced by oncogenic H-Ras, although the mechanisms involved are not fully understood. Here, we show that p38alpha is not a general inhibitor of oncogenic signaling, but that it specifically modulates transformation induced by oncogenes that produce reactive oxygen species (ROS). This inhibitory effect is due to the ROS-induced activation of p38alpha early in the process of transformation, which induces apoptosis and prevents the accumulation of ROS and their carcinogenic effects. Accordingly, highly tumorigenic cancer cell lines have developed a mechanism to uncouple p38alpha activation from ROS production. Our results indicate that oxidative stress sensing plays a key role in the inhibition of tumor initiation by p38alpha.
One of the current models of cancer proposes that oncogenes activate a DNA damage response (DDR), which would limit the growth of the tumor in its earliest stages. In this context, and in contrast to studies focused on the acute responses to a one-time genotoxic insult, understanding how cells respond to a persistent source of DNA damage might become critical for future studies in the field. We here report the discovery of a novel damage-responsive pathway, which involves p27 Kip1 and retinoblastoma tumor suppressors and is only implemented after a persistent exposure to clastogens. In agreement with its late activation, we show that this pathway is critical for the maintenance, but not the initiation, of the cell cycle arrest triggered by DNA damage. Interestingly, this late response is independent of the canonical ataxia telangiectasia mutated-dependent and ataxia telangiectasia mutated and Rad3-related-dependent DDR but downstream of p38 mitogen-activated protein kinase. Our results might help to reconcile the oncogene-induced DNA damage model with the clinical evidence that points to non-DDR members as the most important tumor suppressors in human cancer.
Chronic lymphocytic leukemia (CLL), the most frequent form of adult leukemia in Western countries, is characterized by a highly variable clinical course. Expression profiling of a series of 160 CLL patients allowed interrogating the genes presumably playing a role in pathogenesis, relating the expression of functionally relevant signatures with the time to treatment. First, we identified genes relevant to the biology and prognosis of CLL to build a CLL disease-specific oligonucleotide microarray. Second, we hybridized a training series on the CLLspecific chip, generating a biology-based predictive model. Finally, this model was validated in a new CLL series. Clinical variability in CLL is related with the expression of two gene clusters, associated with B-cell receptor (BCR) signaling and mitogen-activated protein kinase (MAPK) activation, including nuclear factor-jB1 (NF-jB1). The expression of these clusters identifies three risk-score groups with treatment-free survival probabilities at 5 years of 83, 50 and 17%. This molecular predictor can be applied to early clinical stages of CLL. This signature is related to immunoglobulin variable region somatic hypermutation and surrogate markers. There is a molecular heterogeneity in CLL, dependent on the expression of genes defining BCR and MAPK/NF-jB clusters, which can be used to predict time to treatment in early clinical stages.
Contact inhibition is a fundamental process in multicellular organisms aimed at inhibiting proliferation at high cellular densities through poorly characterized intracellular signals, despite availability of growth factors. We have previously identified the protein kinase p38␣ as a novel regulator of contact inhibition, as p38␣ is activated upon cell-cell contacts and p38␣-deficient cells are impaired in both confluence-induced proliferation arrest and p27Kip1 accumulation. Here, we establish that p27 Kip1 plays a key role downstream of p38␣ to arrest proliferation at high cellular densities. Surprisingly, p38␣ does not directly regulate p27Kip1 expression levels but leads indirectly to confluent upregulation of p27 Kip1 and cell cycle arrest via the inhibition of mitogenic signals originating from the epidermal growth factor receptor (EGFR). Hence, confluent activation of p38␣ uncouples cell proliferation from mitogenic stimulation by inducing EGFR degradation through downregulation of the EGFR-stabilizing protein Sprouty2 (Spry2). Accordingly, confluent p38␣-deficient cells fail to downregulate Spry2, providing them in turn with sustained EGFR signaling that facilitates cell overgrowth and oncogenic transformation. Our results provide novel mechanistic insight into the role of p38␣ as a sensor of cell density, which induces confluent cell cycle arrest via the Spry2-EGFR-p27Kip1 network.
Oncogenic Ras signaling has been long known to play an important role in tumorigenesis and human cancer. In this report, we have used the sensitive 2-D-DIGE coupled to MS for the identification of proteins differentially expressed at the cell membrane level between oncogenic H-RasV12-transformed wild-type and p38alpha-deficient mouse embryo fibroblasts (MEFs). Following trifluoroethanol solubilization, 76 proteins were found to be differentially regulated. After PMF, 63 spots containing 42 different proteins were unequivocally identified by MALDI-TOF MS coupled with database interrogation. As expected, many of them were membrane proteins. Six proteins were selected for further validation studies based on their potential functional link with malignant transformation and signal transduction. These were prohibitin (PHB), protein disulfide isomerase 3 (PDIA3), focal adhesion kinase 2 (FAK2), c-GMP dependent protein kinase 2 (KGP2), NADH-ubiquinone oxidoreductase 30 kDa subunit (NUGM) and translationally controlled tumor protein (TCTP). All these proteins were up-regulated in the membranes of H-RasV12-transformed p38alpha-/-cells, except for prohibitin, which was down-regulated. An excellent correlation was found between DIGE results and Western blot studies, indicating the reliability of the 2-D-DIGE analysis. The available evidence about the putative function of the identified proteins supports the emerging role of p38alpha as a negative regulator of tumorigenesis. Further studies are in progress to elucidate the implications of these findings in the regulation of H-Ras-induced transformation by p38alpha signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.