Toll-like receptor (TLR) 3 agonists emerged as attractive candidates for vaccination strategies against tumors and pathogens. An important mechanism of action of such agonists is based on the activation of TLR3-expressing dendritic cells (DCs), which display a unique capacity to induce and stimulate T-cell responses. In this context, it has been demonstrated that targeting of TLR3 by double-stranded RNA such as poly(I:C) results in potent activation of DCs. Major disadvantages of poly(I:C) comprise its undefined chemical structure and very poor homogeneity, with subsequent unpredictable pharmacokinetics and high toxicity. In the present study, we evaluated the physicochemical properties and biological activity of the novel TLR3 agonist RGC100. RGC100 has a defined chemical structure, with a defined length (100 bp) and molecular weight (64.9 KDa) and a good solubility. RGC100 is stable in serum and activates myeloid DCs through TLR3 targeting, as evidenced by gene silencing experiments. Activation of mouse and human myeloid CD1c+ DCs by RGC100 leads to secretion of several proinflammatory cytokines. In addition, RGC100 improves the ability of CD1c+ DCs to stimulate T-cell proliferation. Due to its physicochemical properties and its immunostimulatory properties, RGC100 may represent a promising adjuvant for prophylactic and therapeutic vaccination strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.