Aims: This paper presents a model that encompasses pathways and mechanisms working over adolescence that contribute to adult health inequalities. We review evidence on the four mechanisms: socially differential exposure, tracking, socially differential tracking, and socially differential vulnerability. Methods: We conducted literature searches in English-language peer-reviewed journals using PubMed (from 1966 to May 2009) and PsycINFO, and combined these with hand-searches of reference lists, journals, and authors of particular relevance. Results: Most health indicators are socially patterned in adolescence and track into adulthood, with higher risks of adverse outcomes among individuals from lower socioeconomic positions. Adolescent health behaviours track into adulthood. Smoking, physical activity, and especially fruit and vegetable intake are socially patterned, while evidence for social patterning of alcohol use is less consistent. Relational dimensions like lone parenthood and bullying are socially patterned and track over time, and there are indications of a socially differential vulnerability to the effects of these types of relational strain. Very little research has investigated the social patterning of the above indicators over time or studied social vulnerability of these indicators from adolescence to adulthood. However, all four mechanisms seem to be active in establishing social differences in adult educational attainment. Conclusions: We find the Adolescent Pathway Model useful for providing an overview of what elements and mechanisms in adolescence may be of special importance for adult health inequalities. There is a lack of knowledge of how social patterns of health, health behaviours, and social relations in adolescence transfer into adulthood and to what extent they reflect themselves in adult health.
Preterm birth interrupts normal fetal growth with consequences for postnatal growth and organ development. In preterm infants, many physiological deficits adapt and disappear with advancing postnatal age, but some may persist into childhood. We hypothesized that preterm birth would induce impaired organ growth and function during the first postnatal week in pigs, while motor abilities and behavioral characteristics would show more persistent developmental delay. Cesarean-delivered preterm (n = 112, 90% gestation) or term (n = 56, 100% gestation) piglets were reared under identical conditions and euthanized for blood and organ collection on postnatal days 0, 5, or 26. Body weight gain remained lower in preterm vs. term pigs up to day 26 (25.5 ± 1.5 vs. 31.0 ± 0.5 g·kg(-1)·day(-1), P < 0.01) when relative weights were higher for brain and kidneys and reduced for liver and spleen. Neonatal preterm pigs had reduced values for blood pH, Po2, glucose, lactate, hematocrit, and cortisol, but at day 26, most values were normalized, although plasma serotonin and IGF 1 levels remained reduced. Preterm pigs showed delayed neonatal arousal and impaired physical activity, coordination, exploration, and learning, relative to term pigs (all P < 0.05). Supplementation of parenteral nutrition during the first 5 days with an enteral milk diet did not affect later outcomes. In preterm pigs, many physiological characteristics of immaturity disappeared by 4 wk, while some neurodevelopmental deficits remained. The preterm pig is a relevant animal model to study early dietary and pharmacological interventions that support postnatal maturation and neurodevelopment in preterm infants.
Both (n-3) long-chain PUFA (LCPUFA) and linoleic acid [LA, 18:2(n-6)] improve cardiovascular disease (CVD) risk factors, but a high-LA intake may weaken the effect of (n-3) LCPUFA. In a controlled, double-blind, 2 x 2-factorial 8-wk intervention, we investigated whether fish oil combined with a high- or low-LA intake affects overall CVD risk profile. Healthy men (n = 64) were randomized to 5 mL/d fish oil capsules (FO) [mean intake 3.1 g/d (n-3) LCPUFA] or olive oil capsules (control) and to oils and spreads with either a high (S/B) or a low (R/K) LA content, resulting in a 7.3 g/d higher LA intake in the S/B groups than in the R/K groups. Diet, (n-3) LCPUFA in peripheral blood mononuclear cells, blood pressure (BP), heart rate (HR), and plasma CVD risk markers were measured before and after the intervention. FO lowered fasting plasma triacylglycerol (TAG) (P < 0.001) by 51% and 19% in the FO+R/K-group and FO+S/B-group, respectively, which was also reflected in postprandial TAG measured after the intervention (P < 0.01). Although a fat x FO interaction was found for monocyte chemoattractant protein-1, neither the FO nor fat intervention affected fasting plasma cholesterol, glucose, insulin, fibrinogen, C-reactive protein, interleukin-6, vascular cell adhesion molecule-1, P-selectin, oxidized LDL, cluster of differentiation antigen 40 ligand (CD40L), adiponectin, or fasting or postprandial BP or HR after adjustment for body weight changes. In conclusion, neither fish oil supplementation nor the LA intake had immediate pronounced effects on the overall CVD risk profile in healthy men, but fish oil lowered plasma TAG in healthy subjects with initially low concentrations.
Young adolescents' self-reports of family affluence are fairly valid across the six countries. This finding suggests that the variables measured can be used in epidemiological studies that aim at ranking children according to socioeconomic position.
Background Recruitment for clinical trials continues to be a challenge, as patient recruitment is the single biggest cause of trial delays. Around 80% of trials fail to meet the initial enrollment target and timeline, and these delays can result in lost revenue of as much as US $8 million per day for drug developing companies. Objective This study aimed to conduct a systematic review and meta-analysis examining the effectiveness of online recruitment of participants for clinical trials compared with traditional in-clinic/offline recruitment methods. Methods Data on recruitment rates (the average number of patients enrolled in the study per month and per day of active recruitment) and conversion rates (the percentage of participants screened who proceed to enroll into the clinical trial), as well as study characteristics and patient demographics were collected from the included studies. Differences in online and offline recruitment rates and conversion rates were examined using random effects models. Further, a nonparametric paired Wilcoxon test was used for additional analysis on the cost-effectiveness of online patient recruitment. All data analyses were conducted in R language, and P<.05 was considered significant. Results In total, 3861 articles were screened for inclusion. Of these, 61 studies were included in the review, and 23 of these were further included in the meta-analysis. We found online recruitment to be significantly more effective with respect to the recruitment rate for active days of recruitment, where 100% (7/7) of the studies included had a better online recruitment rate compared with offline recruitment (incidence rate ratio [IRR] 4.17, P=.04). When examining the entire recruitment period in months we found that 52% (12/23) of the studies had a better online recruitment rate compared with the offline recruitment rate (IRR 1.11, P=.71). For cost-effectiveness, we found that online recruitment had a significantly lower cost per enrollee compared with offline recruitment (US $72 vs US $199, P=.04). Finally, we found that 69% (9/13) of studies had significantly better offline conversion rates compared with online conversion rates (risk ratio 0.8, P=.02). Conclusions Targeting potential participants using online remedies is an effective approach for patient recruitment for clinical research. Online recruitment was both superior in regard to time efficiency and cost-effectiveness compared with offline recruitment. In contrast, offline recruitment outperformed online recruitment with respect to conversion rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.