In this article the authors draw attention to the most recent and promising developments of sequence analysis. Taking methodological developments in life course sociology as the starting point, the authors detail the complementary strength in sequence analysis in this field. They argue that recent advantages of sequence analysis were developed in response to criticism of the original work, particularly optimal matching analysis. This debate arose over the past two decades and culminated in the 2000 exchange in Sociological Methods & Research. The debate triggered a "second wave" of sequence techniques that led to new technical implementations of old ideas in sequence analysis. The authors bring these new technical approaches together, demonstrate selected advances with synthetic example data, and show how they conceptually contribute to life course research. This article demonstrates that in less than a decade, the field has made much progress toward fulfilling the prediction that Andrew Abbott made in 2000, that "anybody who believes that pattern search techniques are not going to be basic to social sciences over the next 25 years is going to be very much surprised" (p. 75).
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.