Most tumors develop abnormal fibrotic regions consisting of fibroblasts, immune cells, and a dense extracellular matrix (ECM) immersed in a viscous interstitial fluid, and an abundant fibrotic tumor microenvironment (TME) is associated with poor outcome of treatment. It has been hypothesized that the treatment of cancer may be improved by interventions aiming to normalize this TME. The approaches used in attempts to normalize the fibrotic TME can be categorized into three strategies of targeted antifibrotic therapy: targeting of components of the ECM, targeting of the producers of the ECM components-the activated cancer-associated fibroblasts (CAFs), and targeting of the signaling pathways activating CAFs. To target the ECM, enzymes against components of the ECM have been used, including collagenase, relaxin, hyaluronidase, and lyxyl oxidase. Targeting of CAFs have been investigated by using agents aiming to eliminate or reprogram CAFs. CAFs are activated primarily by transforming growth factor-β (TGF-β), hedgehog, or focal adhesion kinase signaling, and several agents have been used to target these signaling pathways, including angiotensin II receptor I blockers (e.g., losartan) to inhibit the TGF-β pathway. Taken together, these studies have revealed that antifibrotic therapy is a two-edged sword: while some studies suggest enhanced response to treatment after antifibrotic therapy, others suggest that antifibrotic therapy may lead to increased tumor growth, metastasis, and impaired outcome of treatment. There are several possible explanations of these conflicting observations. Most importantly, tumors contain different subpopulations of CAFs, and while some subpopulations may promote tumor growth and metastasis, others may inhibit malignant progression. Furthermore, the outcome of antifibrotic therapy may depend on stage of disease, duration of treatment, treatment-induced activation of alternative profibrotic signaling pathways, and treatment-induced recruitment of tumor-supporting immune cells. Nevertheless, losartan-induced suppression of TGF-β signaling appears to be a particularly promising strategy. Losartan is a widely prescribed antihypertensive drug and highly advantageous therapeutic effects have been observed after losartan treatment of pancreatic cancer. However, improved understanding of the mechanisms governing the development of fibrosis in tumors is needed before safe antifibrotic treatments can be established.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor outcome. Resistance to treatment is associated with impaired vascularity, extensive hypoxia, and interstitial hypertension. In this study, the potential of dynamic contrast-enhanced (DCE)-MRI as a method for assessing the microvascular density (MVD), the fraction of hypoxic tissue, and the interstitial fluid pressure (IFP) of PDACs was investigated. Material and methods: Intramuscular BxPC-3, Capan-2, MIAPaCa-2, and Panc-1 PDAC xenografts were used as preclinical models of human PDACs. DCE-MRI with Gd-DOTA as contrast agent was conducted with a 7.05-T scanner, and the DCE-MRI series were analyzed voxelwise by using the Tofts pharmacokinetic model. Tumor MVD and hypoxia were measured in histological preparations by using pimonidazole as a hypoxia marker and CD31 as a marker of endothelial cells. IFP was measured with a Millar catheter. Results: K trans (the volume transfer constant of Gd-DOTA) increased with increasing MVD and decreased with increasing hypoxic fraction, but was not associated with IFP. Any association between v e (the fractional distribution volume of Gd-DOTA) and MVD, hypoxic fraction, or IFP could not be detected. Conclusions: This study shows that DCE-MRI is a useful modality for assessing important features of the microenvironment of PDAC xenografts and thus provides the basis for future preclinical and clinical DCE-MRI investigations of PDAC.
Studies of cell line-derived human tumor xenografts have suggested that the lymphatics seen in immunohistochemical preparations from non-peripheral regions of tumors are nonfunctional. In this investigation, lymphangiogenesis, hemangiogenesis, and lymph node metastasis were studied in patient-derived xenograft (PDX) models of carcinoma of the uterine cervix. Lymph vessel density (LVD) and blood vessel density (BVD) were measured in immunohistochemical preparations. The expression of angiogenesis-related genes was investigated by quantitative PCR. Lymphatic functionality was assessed with the ferritin assay, and tumor interstitial fluid pressure (IFP) was measured with a Millar catheter. The PDX models mirrored the angiogenesis and aggressiveness of the donor patients' tumors, and two highly aggressive models developed functional lymphatics within the tumor mass. Tumors with functional intratumoral lymphatics showed low IFP, high LVD, high BVD, high expression of a large number of angiogenesis-related genes, and high incidence of lymph node metastases. LVD correlated with BVD, and lymph node metastasis was associated with high LVD and high BVD. Nine angiogenesis-related genes associated with the development of functional intratumoral lymhatics were identified. High expression of these genes, high LVD, and high BVD may be important biomarkers for poor outcome in cervix carcinoma.
BackgroundAbnormalities in the tumor microenvironment are associated with resistance to treatment, aggressive growth, and poor clinical outcome in patients with advanced cervical cancer. The potential of dynamic contrast-enhanced (DCE) MRI to assess the microvascular density (MVD), interstitial fluid pressure (IFP), and hypoxic fraction of patient-derived cervical cancer xenografts was investigated in the present study.MethodsFour patient-derived xenograft (PDX) models of squamous cell carcinoma of the uterine cervix (BK-12, ED-15, HL-16, and LA-19) were subjected to Gd-DOTA-based DCE-MRI using a 7.05 T preclinical scanner. Parametric images of the volume transfer constant (K trans) and the fractional distribution volume (v e) of the contrast agent were produced by pharmacokinetic analyses utilizing the standard Tofts model. Whole tumor median values of the DCE-MRI parameters were compared with MVD and the fraction of hypoxic tumor tissue, as determined histologically, and IFP, as measured with a Millar catheter.ResultsBoth on the PDX model level and the single tumor level, a significant inverse correlation was found between K trans and hypoxic fraction. The extent of hypoxia was also associated with the fraction of voxels with unphysiological v e values (v e > 1.0). None of the DCE-MRI parameters were related to MVD or IFP.ConclusionsDCE-MRI may provide valuable information on the hypoxic fraction of squamous cell carcinoma of the uterine cervix, and thereby facilitate individualized patient management.Electronic supplementary materialThe online version of this article (10.1186/s12967-017-1331-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.