Background: This study investigated the effects of hyperoxic treatment on growth, angiogenesis, apoptosis, general morphology and gene expression in DMBA-induced rat mammary tumors.
This study describes the biological effects of hyperoxic treatment on BT4C rat glioma xenografts in vivo with special reference to tumor growth, angiogenesis, apoptosis, general morphology and gene expression parameters. One group of tumor bearing animals was exposed to normobaric hyperoxia (1 bar, pO(2) = 1.0) and another group was exposed to hyperbaric hyperoxia (2 bar, pO(2) = 2.0), whereas animals housed under normal atmosphere (1 bar, pO(2) = 0.2) served as controls. All treatments were performed at day 1, 4 and 7 for 90 min. Treatment effects were determined by assessment of tumor growth, vascular morphology (immunostaining for von Willebrand factor), apoptosis by TUNEL staining and cell proliferation by Ki67 staining. Moreover, gene expression profiles were obtained and verified by real time quantitative PCR. Hyperoxic treatment caused a approximately 60% reduction in tumor growth compared to the control group after 9 days (p < 0.01). Light microscopy showed that the tumors exposed to hyperoxia contained large "empty spaces" within the tumor mass. Moreover, hyperoxia induced a significant increase in the fraction of apoptotic cells ( approximately 21%), with no significant change in cell proliferation. After 2 bar treatment, the mean vascular density was reduced in the central parts of the tumors compared to the control and 1 bar group. The vessel diameters were significantly reduced (11-24%) in both parts of the tumor tissue. Evidence of induced cell death and reduced angiogenesis was reflected by gene expression analyses.Increased pO(2)-levels in experimental gliomas, using normobaric and moderate hyperbaric oxygen therapy, caused a significant reduction in tumor growth. This process is characterized by enhanced cell death, reduced vascular density and changes in gene expression corresponding to these effects.
Background: The measurement of lactate in emergency medical services has the potential for earlier detection of shock and can be performed with a point-of-care handheld device. Validation of a point-of-care handheld device is required for prehospital implementation. Aim: The primary aim was to validate the accuracy of Lactate Pro 2 in healthy volunteers and in haemodynamically compromised intensive care patients. The secondary aim was to evaluate which sample site, fingertip or earlobe, is most accurate compared to arterial lactate. Methods: Arterial, venous and capillary blood samples from fingertips and earlobes were collected from intensive care patients and healthy volunteers. Arterial and venous blood lactate samples were analysed on a stationary hospital blood gas analyser (ABL800 Flex) as the reference device and compared to the Lactate Pro 2. We used the Bland-Altman method to calculate the limits of agreement and used mixed effect models to compare instruments and sample sites. A total of 49 intensive care patients with elevated lactate and 11 healthy volunteers with elevated lactate were included. Results: There was no significant difference in measured lactate between Lactate Pro 2 and the reference method using arterial blood in either the healthy volunteers or the intensive care patients. Capillary lactate measurement in the fingertip and earlobe of intensive care patients was 47% (95% CI (29 to 68%), p < 0.001) and 27% (95% CI (11 to 45%), p < 0.001) higher, respectively, than the corresponding arterial blood lactate. In the healthy volunteers, we found that capillary blood lactate in the fingertip was 14% higher than arterial blood lactate (95% CI (4 to 24%), p = 0.003) and no significant difference between capillary blood lactate in the earlobe and arterial blood lactate. Conclusion: Our results showed that the handheld Lactate Pro 2 had good agreement with the reference method using arterial blood in both intensive care patients and healthy volunteers. However, we found that the agreement was poorer using venous blood in both groups. Furthermore, the earlobe may be a better sample site than the fingertip in intensive care patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.