Weak evidence of fixed heterozygosity, a low proportion of unique alleles and genetic variation between cytotypes similar to the variation among populations within cytotypes supported the autopolyploid origin of tetraploids, although no multivalent formation was observed. Tetraploids possessed more alleles than diploids and showed higher observed zygotic heterozygosity than diploids, but the observed gametic heterozygosity was similar to the value observed in diploids and smaller than expected under panmixis. Values of the inbreeding coefficient and differentiation among populations (ρST) suggested that the breeding system in both cytotypes of V. cracca is mixed mating with prevailing outcrossing. The reduction in seed production of tetraploids after selfing was less than that in diploids. An absence of correlation between genetic and geographic distances and high differentiation among neighbouring tetraploid populations supports the secondary contact hypothesis with tetraploids of several independent origins in Central Europe. Nevertheless, the possibility of a recent in situ origin of tetraploids through a triploid bridge in some regions is also discussed.
The phenotypic effect of increased cell size in polyploid angiosperms has been repeatedly described; the ecological consequences of the gigas effect are, however, relatively poorly understood. Here, we investigated the effect of cytotype, seed weight, and inter-population variation on seedling germination and growth in diploid and autotetraploid Vicia cracca L. in a common garden experiment. Seeds used in this study originated in the contact zone of the cytotypes in Central Europe. Tetraploids had heavier seeds than diploids and greater germination rates irrespective of seed size. Both seed weight and germination rate displayed high inter-population variation. Further, tetraploids seem to germinate earlier and deposit fewer reserves into the seed bank than diploids. Mean above-ground biomass and seedling height were similar in the two cytotypes of V. cracca. Nonetheless, the tallest tetraploid seedlings were taller than the tallest diploid seedlings, which may be advantageous under strong competition in dense vegetation. This study thus demonstrates that tetraploids of V. cracca may have superior competitive ability to diploids in certain habitats. It also suggests the necessity of studying multiple populations per cytotype when comparing diploids and polyploids, as the effect of population may be of similar or even higher magnitude than the effect of cytotype.
Vicia cracca diploids and autotetraploids are highly parapatric in Europe; tetraploids reside in western and northern part, whereas diploids occupy much drier south-eastern part. They meet together in a Central European contact zone. This distribution pattern raised questions about a transformative effect of polyploidization on plant performance and environmental tolerances. We investigated plant survival, growth, and seed production in two water regimes in a common garden experiment using seeds collected from five localities in the Central European contact zone where diploids and tetraploids occur in sympatry. Obtained data imply that tetraploids of V. cracca are not generally superior in performance to diploids. Significantly larger seeds from tetraploid mother plants collected in the field were not correlated with greater stature of the seedlings. Nonetheless, tetraploids might have a potential to out-compete diploids in the long run due to the tetraploids' ability of greater growth which manifested in the second year of cultivation. Considering the response of diploids and tetraploids to water supply, drought stressed tetraploids but not diploids produced a higher proportion of aborted seeds than watered ones, which implies that tetraploids are more drought susceptible than diploids. On the other hand, decreased plant height in drought stresses tetraploids, which simultaneously increased total seed production, may suggest that tetraploids have a greater ability to avoid local extinction under unfavourable conditions by enhancing biomass allocation into production of seeds at the cost of lower growth. The significant interaction between ploidy level and locality in several traits suggests possible polyfyletic origin of tetraploids and the necessity to clarify the history of the tetraploids in Europe.
Numerous lineages of heterotrophs evolved from photosynthetic eukaryotic ancestors and usually have retained a plastid, although cases of secondary plastid loss are known, too. Based on a previous investigation by transmission electron microscopy (TEM), Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic class Synchromophyceae within the algal phylum Ochrophyta, is a candidate for another case of a plastid loss. Here we provide a detailed characterisation of this organism and formally describe it as Leukarachnion salinum, sp. nov. While we could not find any unambiguous candidate for a plastid organelle by TEM, genome sequencing recovered a complete plastid genome with a reduced gene set similar to plastid genomes of other non-photosynthetic ochrophytes yet even more extreme in the sequence divergence. The presence in the L. salinum transcriptome assembly of homologs of hallmark plastid proteins, including components of the plastid protein import complexes, supported the notion that L. salinum has a cryptic plastid organelle. Based on an analysis of plastid-targeting signals in L. salinum proteins, the plastid presumably contains a unique combination of biosynthetic pathways producing haem, the folate precursor aminodeoxychorismate, and, surprisingly, tocotrienols. Our work thus uncovers the existence of a novel form of a relict plastid organelle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.