In this study, coriander leaves were subjected to three different drying techniques; direct sun, shade, and using an indirect solar dryer. In the developed dryer, hot air obtained from a black-body solar collector was pushed by a blower powered by a solar panel, and sent to the drying chamber with multiple trays for thin-layer drying. Experiments were conducted for summer and winter seasons, and temperature and relative humidity variations in the drying chamber were measured using a data acquisition system. Indirect solar dryer performance was evaluated and compared with sun drying and shade drying for drying kinetics, moisture diffusivity, and product quality. The drying rate curves show a linear falling rate throughout the drying process. The drying kinetic models are well-fitted with the Midilli and Kucuk thin-layer drying model. The effective moisture diffusivity of the dried coriander shows a decreasing trend, sun drying (2.63 × 10−10 m2/s and 1.05 × 10−10 m2/s) followed by solar dryer (1.31 × 10−10 m2/s and 6.57 × 10−10 m2/s), and shade drying (6.57 × 10−11 m2/s and 3.94 × 10−11 m2/s) for winter and summer seasons, respectively. Green color changes from −7.22 to −0.056, −7.22 to 3.15, and −7.22 to −0.35 in indirect solar, direct sun, and shade drying, respectively. The hue angle and Chroma are reduced by 12% and 32% in indirect solar drying, respectively. The total phenol content (TPC) value increases with drying, with summer showing the highest values (365 to 852 mg caffeic acid/100 g dry weight) while the antioxidant capacity reaches 3.41 and 3.53 in winter and summer, respectively from 0.22 μmol Trolox/g dry matter of fresh leaves.
Considering the solar radiation status in Oman, a low-cost, indirect, stand-alone, forced-convective solar dryer was developed to dry medicinal herbs, which are sensitive to direct sun. The hot air flow was obtained using a solar-panel-powered blower and air passing through a black-body solar collector. This drying process could extend the shelf life of herbs while preserving their medicinal and nutritional (physicochemical) properties and adhering to food safety and hygiene practices. This study investigated the benefits of an indirect solar drying technique on the retention of quality attributes of mint and basil used in medicinal applications. Herbs used during drying could be subjected to changes in their physicochemical properties such as color, water activity (Aw), total soluble solids (TSS), phenol content, antioxidant capacity, and moisture content (MC), and, thus, results were compared with fresh herb samples. The dryer chamber-maintained temperature and relative humidity regimes of 30–50 °C and 21–95% and the expected final moisture content (wet basis) was 10%. The dryer showed improved physicochemical quality parameters and the retention of green color with parameter ranges of Aw 0.44–0.63, phenol content (increase) 1705–8994 mg/100 g DM, and antioxidant capacity (increase) 0.61–0.67 µmol/g DM, respectively. This study showed the ability of developed solar dryers to preserve the physicochemical properties of medicinal herbs during drying and can extend to other food products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.