<p class="Abstract">Clustering represents one of the most popular and used Data Mining techniques due to its usefulness and the wide variations of the applications in real world. Defining the number of the clusters required is an application oriented context, this means that the number of clusters k is an input to the whole clustering process. The proposed approach represents a solution for estimating the optimum number of clusters. It is based on the use of iterative K-means clustering under three different criteria; centroids convergence, total distance between the objects and the cluster centroid and the number of migrated objects which can be used effectively to ensure better clustering accuracy and performance. A total of 20000 records available on the internet were used in the proposed approach to test the approach. The results obtained from the approach showed good improvement on clustering accuracy and algorithm performance over the other techniques where centroids convergence represents a major clustering criteria. C# and Microsoft Excel were the software used in the approach.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.