Symptoms of nutrient deficiencies in rice plants often appear on the leaves. The leaf color and shape, therefore, can be used to diagnose nutrient deficiencies in rice. Image classification is an efficient and fast approach for this diagnosis task. Deep convolutional neural networks (DCNNs) have been proven to be effective in image classification, but their use to identify nutrient deficiencies in rice has received little attention. In the present study, we explore the accuracy of different DCNNs for diagnosis of nutrient deficiencies in rice. A total of 1818 photographs of plant leaves were obtained via hydroponic experiments to cover full nutrition and 10 classes of nutrient deficiencies. The photographs were divided into training, validation, and test sets in a 3 : 1 : 1 ratio. Fine-tuning was performed to evaluate four state-of-the-art DCNNs: Inception-v3, ResNet with 50 layers, NasNet-Large, and DenseNet with 121 layers. All the DCNNs obtained validation and test accuracies of over 90%, with DenseNet121 performing best (validation accuracy = 98.62 ± 0.57%; test accuracy = 97.44 ± 0.57%). The performance of the DCNNs was validated by comparison to color feature with support vector machine and histogram of oriented gradient with support vector machine. This study demonstrates that DCNNs provide an effective approach to diagnose nutrient deficiencies in rice.
To understand the effect of ultraviolet (UV)-B irradiation on the antioxidant capacity and growth of lettuce (Lactuca sativa), we subjected lettuce plants to UV-B irradiation (15.55 kJ m−2 d−1) for 7 days and measured yield, photosynthetic performance, hydrogen peroxide (H2O2), reduced glutathione (GSH), and ascorbic acid (AsA) contents, and the enzyme activity and expression of genes involving AsA recycling. UV-B exposure did not significantly decrease the fresh/dry weight of the lettuce shoots. The net photosynthesis rate, internal CO2 concentration, transpiration rate, and stomatal conductance decreased during the first 4 days of irradiation and light but recovered at day 7. In UV-B-treated plants, the levels of AsA, GSH, and H2O2 increased significantly and simultaneously, with a positive correlation found between H2O2 and AsA or GSH levels. UV-B exposure upregulated the expression level of most genes encoding the enzymes involving AsA recycling but downregulated the associated enzymatic activities. The increase of AsA content in UV-B-exposed lettuce might contribute to the AsA–GSH cycle, leading to downregulation of ascorbate oxidase (AO) enzymatic activity and gene expression. UV-B irradiation had a greater impact on metabolite levels than time of UV-B treatment. These results suggest that AsA homeostasis in UV-B-treated lettuce is regulated through a feedback loop between the expression and activity of enzymes associated with AsA recycling. Short-term UV-B supplementation (24 h) could be a promising approach to enhance AsA content in lettuce.
Background Lettuce (Lactuca sativa L.) cultivated in facilities display low vitamin C (L-ascorbic acid (AsA)) contents which require augmentation. Although UV-B irradiation increases the accumulation of AsA in crops, processes underlying the biosynthesis as well as metabolism of AsA induced by UV-B in lettuce remain unclear. Results UV-B treatment increased the AsA content in lettuce, compared with that in the untreated control. UV-B treatment significantly increased AsA accumulation in a dose-dependent manner up until a certain dose.. Based on optimization experiments, three UV-B dose treatments, no UV-B (C), medium dose 7.2 KJ·m− 2·d− 1 (U1), and high dose 12.96 KJ·m− 2·d− 1 (U2), were selected for transcriptome sequencing (RNA-Seq) in this study. The results showed that C and U1 clustered in one category while U2 clustered in another, suggesting that the effect exerted on AsA by UV-B was dose dependent. MIOX gene in the myo-inositol pathway and APX gene in the recycling pathway in U2 were significantly different from the other two treatments, which was consistent with AsA changes seen in the three treatments, indicating that AsA accumulation caused by UV-B may be associated with these two genes in lettuce. UVR8 and HY5 were not significantly different expressed under UV-B irradiation, however, the genes involved in plant growth hormones and defence hormones significantly decreased and increased in U2, respectively, suggesting that high UV-B dose may regulate photomorphogenesis and response to stress via hormone regulatory pathways, although such regulation was independent of the UVR8 pathway. Conclusions Our results demonstrated that studying the application of UV-B irradiation may enhance our understanding of the response of plant growth and AsA metabolism-related genes to UV-B stress, with particular reference to lettuce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.