Currently, developing disinfectant materials is of utmost importance. A significant advantage of our fabric is its reusability. The disinfectants based on a natural polymer of cellulose have been barely investigated. Our work presents a modified cellulose material, and the data obtained for the first time on the chlorine dioxide generation process when treating the material with a sodium chlorite alcohol solution. A method of applying NaClO2 onto the fabric by impregnating it with a solution sprayed by an aerosol generator is proposed. This kind of fabric is capable of withstanding multiple usages after pre-washing and rinsing. The lowest alcohols—methanol, ethanol and isopropanol—are proposed as optimal solvents. It was shown that the phosphorylated cotton cellulose fabric impregnated with this solution generates chlorine dioxide during the first 25–35 min. Neither humidity nor expedites improve the process of releasing the chlorine dioxide, but high moisture content in the air causes the complete absorption of ClO2 by microdrops and its removal from the gas environment. A promising technique for removing the excess ClO2 by the means of UV treatment is proposed: after 15 min of treating ClO2 in the gas phase, it disappears entirely. These materials could be used as disinfectants in different industries, such as food and industrial manufacturing.
The dynamic light scattering method was successfully applied to determine the molar mass of nitrocellulose. The methodology of nitrocellulose fractionation in acetonic solutions is described in detail; six polymer fractions with monomodal distribution were obtained. It was shown that the unfractionated colloxylin with polymodal molar mass distribution had mass average molecular mass values of 87.3 ± 14.1, 28.3 ± 7.3, and 0.54 ± 0.17 kDa when investigated by the dynamic light scattering method. The viscometric method only provided integral viscosity average molar mass equal to 56.7 ± 5.8 kDa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.