Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7×10−9 at rs8018720 in SEC23A, and P = 1.9×10−14 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene–gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.
Background Implications of different adiposity measures on cardiovascular disease aetiology remain unclear. In this paper we quantify and contrast causal associations of central adiposity (waist:hip ratio adjusted for BMI (WHRadjBMI)) and general adiposity (body mass index (BMI)) with cardiometabolic disease. Methods 97 independent single nucleotide polymorphisms (SNPs) for BMI and 49 SNPs for WHRadjBMI were used to conduct Mendelian randomization analyses in 14 prospective studies supplemented with CHD data from CARDIoGRAMplusC4D (combined total 66,842 cases), stroke from METASTROKE (12,389 ischaemic stroke cases), type 2 diabetes (T2D) from DIAGRAM (34,840 cases), and lipids from GLGC (213,500 participants) consortia. Primary outcomes were CHD, T2D, and major stroke subtypes; secondary analyses included 18 cardiometabolic traits. Results Each one standard deviation (SD) higher WHRadjBMI (1SD~0.08 units) associated with a 48% excess risk of CHD (odds ratio [OR] for CHD: 1.48; 95%CI: 1.28-1.71), similar to findings for BMI (1SD~4.6kg/m2; OR for CHD: 1.36; 95%CI: 1.22-1.52). Only WHRadjBMI increased risk of ischaemic stroke (OR 1.32; 95%CI 1.03-1.70). For T2D, both measures had large effects: OR 1.82 (95%CI 1.38-2.42) and OR 1.98 (95%CI 1.41-2.78) per 1SD higher WHRadjBMI and BMI respectively. Both WHRadjBMI and BMI were associated with higher left ventricular hypertrophy, glycaemic traits, interleukin-6, and circulating lipids. WHRadjBMI was also associated with higher carotid intima-media thickness (39%; 95%CI: 9%-77% per 1SD). Conclusions Both general and central adiposity have causal effects on CHD and T2D. Central adiposity may have a stronger effect on stroke risk. Future estimates of the burden of adiposity on health should include measures of central and general adiposity.
Background Depression is more common in obese than non-obese individuals, especially in women, but the causal relationship between obesity and depression is complex and uncertain. Previous studies have used genetic variants associated with BMI to provide evidence that higher body mass index (BMI) causes depression, but have not tested whether this relationship is driven by the metabolic consequences of BMI nor for differences between men and women. Methods We performed a Mendelian randomization study using 48 791 individuals with depression and 291 995 controls in the UK Biobank, to test for causal effects of higher BMI on depression (defined using self-report and Hospital Episode data). We used two genetic instruments, both representing higher BMI, but one with and one without its adverse metabolic consequences, in an attempt to ‘uncouple’ the psychological component of obesity from the metabolic consequences. We further tested causal relationships in men and women separately, and using subsets of BMI variants from known physiological pathways. Results Higher BMI was strongly associated with higher odds of depression, especially in women. Mendelian randomization provided evidence that higher BMI partly causes depression. Using a 73-variant BMI genetic risk score, a genetically determined one standard deviation (1 SD) higher BMI (4.9 kg/m2) was associated with higher odds of depression in all individuals [odds ratio (OR): 1.18, 95% confidence interval (CI): 1.09, 1.28, P = 0.00007) and women only (OR: 1.24, 95% CI: 1.11, 1.39, P = 0.0001). Meta-analysis with 45 591 depression cases and 97 647 controls from the Psychiatric Genomics Consortium (PGC) strengthened the statistical confidence of the findings in all individuals. Similar effect size estimates were obtained using different Mendelian randomization methods, although not all reached P < 0.05. Using a metabolically favourable adiposity genetic risk score, and meta-analysing data from the UK biobank and PGC, a genetically determined 1 SD higher BMI (4.9 kg/m2) was associated with higher odds of depression in all individuals (OR: 1.26, 95% CI: 1.06, 1.50], P = 0.010), but with weaker statistical confidence. Conclusions Higher BMI, with and without its adverse metabolic consequences, is likely to have a causal role in determining the likelihood of an individual developing depression.
Background The three main alleles of the APOE gene (ε4, ε3 and ε2) carry differential risks for conditions including Alzheimer's disease (AD) and cardiovascular disease. Due to their clinical significance, we explored disease associations of the APOE genotypes using a hypothesis-free, data-driven, phenome-wide association study (PheWAS) approach. Methods We used data from the UK Biobank to screen for associations between APOE genotypes and over 950 disease outcomes using genotype ε3ε3 as a reference. Data was restricted to 337,484 white British participants (aged 37–73 years). Findings After correction for multiple testing, PheWAS analyses identified associations with 37 outcomes, representing 18 distinct diseases. As expected, ε3ε4 and ε4ε4 genotypes associated with increased odds of AD (p ≤ 7.6 × 10 −46 ), hypercholesterolaemia (p ≤ 7.1 × 10 −17 ) and ischaemic heart disease (p ≤ 2.3 × 10 −4 ), while ε2ε3 provided protection for the latter two conditions (p ≤ 3.7 × 10 −10 ) compared to ε3ε3. In contrast, ε4-associated disease protection was seen against obesity, chronic airway obstruction, type 2 diabetes, gallbladder disease, and liver disease (all p ≤ 5.2 × 10 −4 ) while ε2ε2 homozygosity increased risks of peripheral vascular disease, thromboembolism, arterial aneurysm, peptic ulcer, cervical disorders, and hallux valgus (all p ≤ 6.1 × 10 −4 ). Sensitivity analyses using brain neuroimaging, blood biochemistry, anthropometric, and spirometric biomarkers supported the PheWAS findings on APOE associations with respective disease outcomes. Interpretation PheWAS confirms strong associations between APOE and AD, hypercholesterolaemia, and ischaemic heart disease, and suggests potential ε4-associated disease protection and harmful effects of the ε2ε2 genotype, for several conditions. Funding National Health and Medical Research Council of Australia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.