Heat shock protein 90 (Hsp90) is a molecular chaperone that is responsible for the folding and maturation of client proteins that are associated with all ten hallmarks of cancer. Hsp90 N-terminal pan inhibitors have experienced unfavorable results in clinical trials due to induction of the heat shock response (HSR), among other concerns. Novobiocin, a well characterized DNA gyrase B inhibitor, was identified as the first Hsp90 C-terminal inhibitor that manifested anticancer effects without induction of the HSR. In this letter, a library of Hsp90 C-terminal inhibitors derived from a benzothiazole-based scaffold, known to inhibit DNA gyrase B, was designed, synthesized, and evaluated. Several compounds were found to manifest low micromolar activity against both MCF-7 and SKBr3 breast cancer cell lines via Hsp90 Cterminal inhibition.
In patients with triple‐negative breast cancer (TNBC), evidence suggests that tumor‐initiating cells (TIC) have stem cell‐like properties, leading to invasion and metastasis. HSP90 plays a critical role in the conformational maintenance of many client proteins in TIC development. Therefore, we hypothesize that the novel C‐terminal HSP90 inhibitors KU711 and KU758 can target TIC and represent a promising strategy for overcoming metastasis. Human breast cancer cells (MDA‐MB‐468LN, MDA‐MB‐231) treated with the HSP90 inhibitors KU711, KU758, and 17‐AAG showed a 50–80% decrease in TIC markers CD44 and aldehyde dehydrogenase (P < 0.01) as assessed by flow cytometry. A decrease in sphere formation, which was used to assess self‐renewal, was observed after the treatment of TNBC cells starting at 2.5 µm KU711 and 0.31 µm KU758. KU compounds also blocked the invasion and migration of TNBC cells in a dose‐dependent manner. The knockdown of HSP90 clients was observed without any change in prosurvival HSP70 levels. In vivo, in a murine orthotopic breast cancer model, treatment with KU758 and KU711 yielded an approximately twofold and a fourfold reduction in tumor volumes versus control, respectively, without demonstrated toxicity. In conclusion, C‐terminal HSP90 inhibitors are potent novel therapeutics against TNBC in vitro and in vivo as they target TICs and block invasion, EMT transition, and self‐renewal.
In this paper, we report the mechanochemical synthesis of unsymmetrical salens using grinding and ball milling technologies, respectively, both of which were afforded in good yield. The chelating effect of the unsymmetrical salens with zinc, copper, and cobalt was studied and the chiral Co–salen complex 2f was obtained in 98% yield. Hydrolytic kinetic resolution (HKR) of epichlorohydrin with water catalyzed by complex 2f (0.5 mol %) was explored and resulted in 98% ee, suggesting complex 2f could serve as an enantioselective catalyst for the asymmetric ring opening of terminal epoxides by phenols. A library of α-aryloxy alcohols 3 was thereafter synthesized in good yield and high ee using 2f via the phenolic KR of epichlorohydrin.
Homopropargyl alcohols react with t-BuONO to form acyloximes which can be oxidatively cyclized to yield ioxazoles. The mechanism for the initial reaction of HONO with alkynes to form acyloximes (e.g., 13c) has been explored at the B3LYP/6-31G(d,p) + ZPVE level of theory. The observed chemoselectivity and regioselectivity are explained via an acid-catalyzed mechanism. Furthermore, the potential energy surface revealed numerous surprising features. The addition of HONO (8) to protonated 1-phenylpropyne (18) is calculated to follow a reaction pathway involving sequential transition states (TS6 and TS8), for which reaction dynamics likely play a role. This reaction pathway can bypass the expected addition product 21 as well as transition state TS8, directly forming the rearranged product 23. Nevertheless, TS8 is key to understanding the potential energy surface; there is a low barrier for the pseudopericylic [1,3]-NO shift, calculated to be only 8.4 kcal/mol above 21. This places TS8 well below TS6, making the valley-ridge inflection point (VRI or bifurcation) and direct formation of 23 possible. The final tautomerization step to the acyloxime can be considered to be a [1,5]-proton shift. However, the rearrangement in the case of 17h to 13c is calculated to be barrierless, arguably because the pathway is pseudopericyclic and exothermic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.