Low-power integrated projection technology can play a key role in development of low-cost mobile devices with built-in high-resolution projectors. Low-cost 3D imaging and holography systems are also among applications of such a technology. In this paper, an integrated projection system based on a two-dimensional optical phased array with fast beam steering capability is reported. Forward biased p-i-n phase modulators with 200MHz bandwidth are used per each array element for rapid phase control. An optimization algorithm is implemented to compensate for the phase dependent attenuation of the p-i-n modulators. Using rapid vector scanning technique, images were formed and recorded within a single snapshot of the IR camera.
Abstract:An integrated silicon nanophotonic coherent imager (NCI), with a 4 × 4 array of coherent pixels is reported. In the proposed NCI, on-chip optical processing determines the intensity and depth of each point on the imaged object based on the instantaneous phase and amplitude of the optical wave incident on each pixel. The NCI operates based on a modified time-domain frequency modulated continuous wave (FMCW) ranging scheme, where concurrent time-domain measurements of both period and the zero-crossing time of each electrical output of the nanophotonic chip allows the NCI to overcome the traditional resolution limits of frequency domain detection. The detection of both intensity and relative delay enables applications such as high-resolution 3D reflective and transmissive imaging as well as index contrast imaging. We demonstrate 3D imaging with 15µm depth resolution and 50µm lateral resolution (limited by the pixel spacing) at up to 0.5-meter range. The reported NCI is also capable of detecting a 1% equivalent refractive index contrast at 1mm thickness. 195-199 (2013
We propose the use of airborne ultrasound for wireless power transfer to mm-sized nodes, with intended application in the next generation of the Internet of Things (IoT). We show through simulation that ultrasonic power transfer can deliver 50 [Formula: see text] to a mm-sized node 0.88 m away from a ~ 50-kHz, 25-cm transmitter array, with the peak pressure remaining below recommended limits in air, and with load power increasing with transmitter area. We report wireless power recovery measurements with a precharged capacitive micromachined ultrasonic transducer, demonstrating a load power of 5 [Formula: see text] at a simulated distance of 1.05 m. We present aperture efficiency, dynamic range, and bias-free operation as key metrics for the comparison of transducers meant for wireless power recovery. We also argue that long-range wireless charging at the watt level is extremely challenging with existing technology and regulations. Finally, we compare our acoustic powering system with cutting edge electromagnetically powered nodes and show that ultrasound has many advantages over RF as a vehicle for power delivery. Our work sets the foundation for further research into ultrasonic wireless power transfer for the IoT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.