The excited state properties of a series of binuclear NHetPHOS-Cu(I) complexes (NHetPHOS) have been investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT). It is shown that experimental trends observed in powder, generally explored via S and T excited state energetics and S ⇔ T intersystem crossing (ISC) efficiency, are hardly analyzed on the basis of excited state properties calculated in solution. Indeed, several local minima corresponding to various structural deformations are evident on the lowest excited state potential energy surfaces (PES) when solvent correction is applied, leading to a four-state thermally activated delayed fluorescence (TADF) mechanism. In contrast, preliminary simulations performed in the solid point to the reduction of nuclear flexibility and consequently to a rather simple two-state model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.