PTEN-induced novel kinase 1 (PINK1) mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1) exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential.
METHODS: 129 post-mortem human brain samples were analyzed in brain regional specific manner exploring their associations with morphological changes and cognitive decline.RESULTS: We have observed robust changes reflecting synaptic dysfunction in all studied dementia groups. There were significant associations between the rate of cognitive decline and decreased levels of Rab3 in DLB in the inferior parietal lobe and SNAP25 in AD in the prefrontal cortex. Of particular note, synaptic proteins significantly discriminated between dementia cases and controls with over 90% sensitivity and specificity. DISCUSSION: Our findings suggest that the proposition that synaptic markers can predict cognitive decline in AD, should be extended to Lewy body diseases.
Multiple genetic and environmental factors are likely to contribute to the development of Alzheimer's disease (AD). The most important known risk factor for AD is presence of the E4 isoform of apolipoprotein E (apoE). Epidemiological studies demonstrated that apoE4 carriers have a higher risk and develop the disease and an early onset. Moreover, apoE4 is the only molecule that has been associated with all the biochemical disturbances characteristic of the disease: amyloid-beta (Aβ) deposition, tangle formation, oxidative stress, lipid homeostasis deregulation, synaptic plasticity loss and cholinergic dysfunction. This large body of evidence suggest that apoE is a key player in the pathogenesis of AD. This short review examines the current facts and hypotheses of the association between apoE4 and AD, as well as the therapeutic possibilities that apoE might offer for the treatment of this disease.
Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression.
These results support the potential involvement of cGMP in the pathological and clinical development of AD. The cGMP reduction in early stages of AD might participate in the aggravation of amyloid pathology and cognitive decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.