In this paper we introduce a new class of quasilinear elliptic equations driven by the so-called double phase operator with variable exponents. We prove certain properties of the corresponding Musielak-Orlicz Sobolev spaces (completeness, reflexivity, an equivalent norm) and the properties of the new double phase operator (continuity, strict monotonicity, (S + )-property). Finally we show the existence and uniqueness of corresponding elliptic equations with right-hand sides that have gradient dependence (so-called convection terms) under very general assumptions on the data. As a result of independent interest, we also show the density of smooth functions in the new Musielak-Orlicz Sobolev space even when the domain is unbounded.
In this paper, we study quasilinear elliptic equations driven by the double phase operator along with a reaction that has a singular and a parametric superlinear term and with a nonlinear Neumann boundary condition of critical growth.Based on a new equivalent norm for Musielak-Orlicz Sobolev spaces and the Nehari manifold along with the fibering method, we prove the existence of at least two weak solutions, provided the parameter is sufficiently small.
In this paper, we study a nonlinear Dirichlet problem driven by the (p, q)-Laplacian and with a reaction that has the combined effects of a negative concave term and of an asymmetric perturbation which is superlinear on the positive semiaxis and resonant in the negative one. We prove a multiplicity theorem for such problems obtaining three nontrivial solutions, all with sign information. Furthermore, under a local symmetry condition, we prove the existence of a whole sequence of sign-changing solutions converging to zero in $$C^1_0(\overline{\Omega })$$
C
0
1
(
Ω
¯
)
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.