Simulation of flow processes in hyper-regulated Mediterranean watersheds is critical when examining general water demand and established ecological flows of River Basin Management Plans. Weather dynamics in the Mediterranean zone in recent decades have been characterised by a natural variation of drought cycles. In addition, exacerbated climate change proves that water fluxes must be estimated with more exhaustive models. The aim of this study is to assess the water balance of the Cega-Eresma-Adaja (CEA) watershed, including a detailed assessment of land uses and management practices to quantify agricultural water demand for the time period 2004-2014. We used the Soil and Water Assessment Tool (SWAT), given that it is a widespread tool that involves complex processes of the water cycle on a basin scale, providing information on water dynamics related to land use as a fundamental characteristic for water balance calculation. The Nash-Sutcliffe coefficient efficiency value, the main index of calibration and validation performance, was 0.86 for the Eresma-Adaja River and 0.67 for the Cega River. This presents a good result considering the large-scale watershed studied. Analysing dry hydrological years, we found that the estimation of ecological flows for sub-arid zones needs to consider the shallow aquifer-river relationship. During spring-summer periods, with very low flow, monitoring the shallow aquifer levels ensures a good ecological status. The study reveals that aspects such as crop rotation, soil management and their associated measures in Mediterranean basins are key factors for water resource management during drought periods. These results are expected to serve stakeholders and river basin authorities in conducting better-integrated water management practices in the watershed.
Abstract:The aim of this paper is to evaluate the green, blue and grey water footprint (WF) of crops in the Duero river basin. For this purpose CWUModel was developed. CWUModel is able to estimate the green and blue water consumed by crops and the water needed to assimilate the nitrogen leaching resulting from fertilizer application. The total WF of crops in the Spanish Duero river basin was simulated as 9473 Mm 3 /year (59% green, 20% blue and 21% grey). Cultivation of crops in rain-fed lands is responsible for 5548 Mm 3 /year of the WF (86% green and 14% grey), whereas the irrigated WF accounts for 3924 Mm 3 /year (20% green, 47% blue and 33% grey). Barley is the crop with the highest WF, with almost 37% of the total WF for the crops simulated for the basin, followed by wheat (17%). Although maize makes up 16% of the total WF of the basin, the blue and grey components comprise the 36% of the total blue and grey WF in the basin. The relevance of green water goes beyond the rain-fed production, to the extent that in long-cycle irrigated cereals it accounts for over 40% of the total water consumed. Nonetheless, blue water is a key component in agriculture, both for production and economically. The sustainability assessment shows that the current blue water consumption of crops causes a significant or severe water stress level in 2-5 months of the year. The anticipated expansion of irrigation in the coming years could hamper water management, despite the Duero being a relatively humid basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.