Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft–Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations.
In this chapter, the impact of the shape of thermoelectric legs and parasitic contact resistances from metal electrodes and device wiring on thermoelectric figure of merit ZT is addressed. First section deals with the influence of the legs geometry on ZT. The shape of the legs is crucial in the thermoelectric performance of the thermoelectric devices. Unlike to conventional geometry thermoelectric legs, non-constant cross-section legs could help by lowering the overall thermal conductance of the device so as to increase the temperature gradient along legs, hence harnessing the Thomson effect, which is generally neglected in constant square cross-section thermoelectric legs. The final section is devoted to the electrical contact engineering of the device. Parasitic contact and wiring resistances play an important role in the performance of the device because they increase the isothermal resistance of the device. As the isothermal resistance of the device increases, the ZT decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.