Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.
The thickness of epicardial adipose tissue (EAT), which is an inflammatory source for coronary artery disease (CAD), correlates with insulin resistance. One trigger factor is impaired adipogenesis. Here, our aim was to clarify the underlying mechanisms of insulin resistance on EAT-mesenchymal cells (MC). EAT and subcutaneous adipose tissue (SAT) were collected from 19 patients who were undergoing heart surgery. Their dedifferentiated adipocytes (DAs) and/or MCs were cultured. After the induction of adipogenesis or stimulation with insulin, the expression of adipokines was analyzed using real-time polymerase chain reaction (PCR). Colorimetric assays were performed to measure glucose levels and proliferation rate. Proteins modifications were detected via the proteomic approach and Western blot. Our results showed lower adipogenic ability in EAT-MCs than in SAT-MCs. Maximum adiponectin levels were reached within 28-35 days of exposure to adipogenic inducers. Moreover, the adipogenesis profile in EAT-MCs was dependent on the patients' clinical characteristics. The low adipogenic ability of EAT-MCs might be associated with an insulin-resistant state because chronic insulin treatment reduced the inflammatory cytokine expression levels, improved the glucose consumption, and increased the post-translational modifications (PTMs) of the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1). We found lower adipogenic ability in EAT-MCs than in SAT-MCs. This lower ability level was dependent on gender and the presence of diabetes, obesity, and CAD. Low adipogenesis ability and insulin resistance in EAT-MCs might shed light on the association between EAT dysfunction and cardiovascular disease.
Epicardial adipose tissue (EAT) is a source of energy for heart that expresses the insulin-sensitizer, anti-inflammatory and anti-atherogenic protein, adiponectin. But, in coronary artery disease, adiponectin production declines. Our objective was to determine its regulation by glucose and inflammation in stromal cells from EAT and subcutaneous adipose tissue (SAT) and its paracrine effect on endothelial cells. Stromal cells of EAT and SAT were obtained from patients who underwent cardiac surgery. Adipogenesis was induced at 117, 200, or 295 mg/dl glucose, with or without macrophage-conditioned medium (MCM). Expression of adiponectin, GLUT-4 and the insulin receptor was analyzed by real-time PCR. The paracrine effect of stromal cells was determined in co-cultures with endothelial cells, by exposing them to high glucose and/or MCM, and, additionally, to leukocyte-conditioned medium from patients with myocardial infarction. The endothelial response was determined by analyzing vascular adhesion molecule expression. Our results showed a U-shaped dose-response curve of glucose on adiponectin in EAT, but not in SAT stromal cells. Conversely, MCM reduced the adipogenesis-induced adiponectin expression of EAT stromal cells. The presence of EAT stromal increased the inflammatory molecules of endothelial cells. This deleterious effect was emphasized in the presence of inflammatory cell-conditioned medium from patients with myocardial infarction. Thus, high glucose and inflammatory cells reduced adipogenesis-induced adiponectin expression of EAT stromal cells, which induced an inflammatory paracrine process in endothelial cells. This inflammatory effect was lower in presence of mature adipocytes, producers of adiponectin. These results contribute to understanding the role of EAT dysfunction on coronary atherosclerosis progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.