Network anomaly detection and classification is an important open issue in network security. Several approaches and systems based on different mathematical tools have been studied and developed, among them, the Anomaly-Network Intrusion Detection System (A-NIDS), which monitors network traffic and compares it against an established baseline of a "normal" traffic profile. Then, it is necessary to characterize the "normal" Internet traffic. This paper presents an approach for anomaly detection and classification based on Shannon, Rényi and Tsallis entropies of selected features, and the construction of regions from entropy data employing the Mahalanobis distance (MD), and One Class Support Vector Machine (OC-SVM) with different kernels (Radial Basis Function (RBF) and Mahalanobis Kernel (MK)) for "normal" and abnormal traffic. Regular and non-regular regions built from "normal" traffic profiles allow anomaly detection, while the classification is performed under the assumption that regions corresponding to the attack classes have been previously characterized. Although this approach allows the use of as many features as required, only four well-known significant features were selected in our case. In order to evaluate our approach, two different data sets were used: one set of real traffic obtained from an Academic Local Area Network (LAN), and the other a subset of the 1998 MIT-DARPA Entropy 2015, 17 6240 set. For these data sets, a True positive rate up to 99.35%, a True negative rate up to 99.83% and a False negative rate at about 0.16% were yielded. Experimental results show that certain q-values of the generalized entropies and the use of OC-SVM with RBF kernel improve the detection rate in the detection stage, while the novel inclusion of MK kernel in OC-SVM and k-temporal nearest neighbors improve accuracy in classification. In addition, the results show that using the Box-Cox transformation, the Mahalanobis distance yielded high detection rates with an efficient computation time, while OC-SVM achieved detection rates slightly higher, but is more computationally expensive.
Network anomaly detection and classification is an important open issue of network security. Several approaches and systems based on different mathematical tools have been studied and developed. Among them, the Anomaly-Network Intrusion Detection System (A-NIDS), this monitors network traffic and compares it against an established baseline of "normal" traffic profile. Then, it is necessary to characterize the "normal" Internet traffic. This paper presents an approach for anomaly detection and classification based on: the entropy of selected features (including Shannon, Renyi and Tsallis entropies), the construction of regions from entropy data employing the Mahalanobis distance (MD), and One Class Support Vector Machine (OC-SVM) with different kernels (RBF and particularity Mahalanobis) for "normal" and abnormal traffic. Regular and non-regular regions built from "normal" traffic profiles, allow the anomaly detection; whilst the classification is performed under the assumption that regions corresponding to the attack classes have been characterized previously. Although, this approach allows the use of as many features as required, only four well known significant features were selected in our case. To evaluate our approach two different data sets were used: one set of real traffic obtained from an Academic LAN, and the other a subset of the 1998 MIT-DARPA set. The selected features sets computed in our experiments provide detection rates up to 99.90% with "normal" traffic and up to 99.83% with anomalous traffic and false alarm rate of 0.086%. Experimental results show that certain values of the q parameter of the generalized entropies and the use of OC-SVM improves the detection rate of some attack classes, due to a better fit of the region to the data. Besides, our results show that MD allows to obtain high detection rates with an efficient computation time, while OC-SVM achieved detection rates slightly higher but more expensive computationally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.