Buildings are among the largest energy consumers in the world. As new technologies have been developed, great advances have been made in buildings, turning conventional buildings into smart buildings. These smart buildings have allowed for greater supervision and control of the energy resources within the buildings, taking steps to energy management strategies to achieve significant energy savings. The forecast of energy consumption in buildings has been a very important element in these energy strategies since it allows adjusting the operation of buildings so that energy can be used more efficiently. This paper presents a review of energy consumption forecasting in smart buildings for improving energy efficiency. Different forecasting methods are studied in nonresidential and residential buildings. Following this, the literature is analyzed in terms of forecasting objectives, input variables, forecasting methods and prediction horizon. In conclusion, the paper examines future challenges for building energy consumption forecasting.
Harmonic distortion is one of the disturbances that most affects the quality of the electrical system. The widespread use of power electronic systems, especially power converters, has increased harmonic and interharmonic emission in a wide range of frequencies. Therefore, there are new needs in the measurement of harmonic distortion in modern electrical systems, such as measurement in the supra-harmonic range (>2 kHz) and the measurement of interharmonics. The International Electrotechnical Commission (IEC) standards define new total harmonic distortion (THD) rates based on the concept of frequency groupings. However, the rates defined in the IEC standards have shortcomings when measuring signals such as those present in the outputs of power systems with abundant interharmonic content and presence of components in the supra-harmonic range. Therefore, in this work, a comparison is made between the different THD factors currently defined, both in the literature and in the standards, to show which of them are the most suitable for assessing harmonic and interharmonic contamination in power system signals such as those present at the output of inverters.
This paper presents a methodology for power consumption estimation considering harmonic and interharmonic content and then it is compared to the power consumption estimation commonly done by commercial equipment based on the fundamental frequency, and how they can underestimate the power consumption considering power quality disturbances (PQD). For this purpose, data of electrical activity at the electrical distribution boards in a healthcare facility is acquired for a long time period with proprietary equipment. An analysis in the acquired current and voltage signals is done, in order to compare the power consumption centered in the fundamental frequency with the generalized definition of power consumption. The results obtained from the comparison in the power consumption estimation show differences between 4% and 10% of underestimated power consumption. Thus, it is demonstrated that the presence of harmonic and interharmonic content provokes a significant underestimation of power consumption using only the power consumption centered at the fundamental frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.