What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backwards compatibility. And indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities and unprecedented numbers of antennas. But unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
New research directions will lead to fundamental changes in the design of future 5th generation (5G) cellular networks. This paper describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter Wave, Massive-MIMO, smarter devices, and native support to machine-2-machine. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.
Abstract-The mutual information of independent parallel Gaussian-noise channels is maximized, under an average power constraint, by independent Gaussian inputs whose power is allocated according to the waterfilling policy. In practice, discrete signaling constellations with limited peak-to-average ratios ( -PSK, -QAM, etc.) are used in lieu of the ideal Gaussian signals. This paper gives the power allocation policy that maximizes the mutual information over parallel channels with arbitrary input distributions. Such policy admits a graphical interpretation, referred to as mercury/waterfilling, which generalizes the waterfilling solution and allows retaining some of its intuition. The relationship between mutual information of Gaussian channels and nonlinear minimum mean-square error (MMSE) proves key to solving the power allocation problem.Index Terms-Channel capacity, Gaussian channels, minimum mean-square error (MMSE), mutual information, power allocation, waterfilling.
Abstract-This paper applies random matrix theory to obtain analytical characterizations of the capacity of correlated multiantenna channels. The analysis is not restricted to the popular separable correlation model, but rather it embraces a more general representation that subsumes most of the channel models that have been treated in the literature. For arbitrary signal-to-noise ratios ( ), the characterization is conducted in the regime of large numbers of antennas. For the low-and highregions, in turn, we uncover compact capacity expansions that are valid for arbitrary numbers of antennas and that shed insight on how antenna correlation impacts the tradeoffs among power, bandwidth, and rate.
Cooperation is viewed as a key ingredient for interference management in wireless systems. This paper shows that cooperation has fundamental limitations. The main result is that even full cooperation between transmitters cannot in general change an interference-limited network to a noise-limited network. The key idea is that there exists a spectral efficiency upper bound that is independent of the transmit power. First, a spectral efficiency upper bound is established for systems that rely on pilot-assisted channel estimation; in this framework, cooperation is shown to be possible only within clusters of limited size, which are subject to out-of-cluster interference whose power scales with that of the in-cluster signals. Second, an upper bound is also shown to exist when cooperation is through noncoherent communication; thus, the spectral efficiency limitation is not a by-product of the reliance on pilot-assisted channel estimation. Consequently, existing literature that routinely assumes the high-power spectral efficiency scales with the log of the transmit power provides only a partial characterization.The complete characterization proposed in this paper subdivides the high-power regime into a degrees-of-freedom regime, where the scaling with the log of the transmit power holds approximately, and a saturation regime, where the spectral efficiency hits a ceiling that is independent of the power. Using a cellular system as an example, it is demonstrated that the spectral efficiency saturates at power levels of operational relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.