SUMMARY
Adult neurogenic niches harbor quiescent neural stem cells, however their in vivo identity has been elusive. Here, we prospectively isolate GFAP+CD133+ (quiescent neural stem cells, qNSCs) and GFAP+CD133+EGFR+ (activated neural stem cells, aNSCs) from the adult ventricular-subventricular zone. aNSCs are rapidly cycling, highly neurogenic in vivo and enriched in colony-forming cells in vitro. In contrast, qNSCs are largely dormant in vivo, generate olfactory bulb interneurons with slower kinetics, and only rarely form colonies in vitro. Moreover, qNSCs are Nestin-negative, a marker widely used for neural stem cells. Upon activation, qNSCs upregulate Nestin and EGFR, and become highly proliferative. Notably, qNSCs and aNSCs can interconvert in vitro. Transcriptome analysis reveals that qNSCs share features with quiescent stem cells from other organs. Finally, small molecule screening identified the GPCR ligands, S1P and PGD2, as factors that actively maintain the quiescent state of qNSCs.
Specialized niches support the lifelong maintenance and function of tissue-specific stem cells. Adult neural stem cells in the ventricular-subventricular zone (V-SVZ) contact the cerebrospinal fluid (CSF), which flows through the lateral ventricles. A largely ignored component of the V-SVZ stem cell niche is the lateral ventricle choroid plexus (LVCP), a primary producer of CSF. Here we show that the LVCP, in addition to performing important homeostatic support functions, secretes factors that promote colony formation and proliferation of purified quiescent and activated V-SVZ stem cells and transit-amplifying cells. The functional effect of the LVCP secretome changes throughout the lifespan, with activated neural stem cells being especially sensitive to age-related changes. Transcriptome analysis identified multiple factors that recruit colony formation and highlights novel facets of LVCP function. Thus, the LVCP is a key niche compartment that translates physiological changes into molecular signals directly affecting neural stem cell behavior.
Quiescent neural stem cells (NSCs) in the adult mouse ventricular-subventricular zone (V-SVZ) undergo activation to generate neurons and some glia. Here we show that platelet-derived growth factor receptor beta (PDGFRβ) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia. Selective deletion of PDGFRβ in adult V-SVZ NSCs leads to their release from quiescence, uncovering gliogenic domains for different glial cell types. These domains are also recruited upon injury. We identify an intraventricular oligodendrocyte progenitor derived from NSCs inside the brain ventricles that contacts supraependymal axons. Together, our findings reveal that the adult V-SVZ contains spatial domains for gliogenesis, in addition to those for neurogenesis. These gliogenic NSC domains tend to be quiescent under homeostasis and may contribute to brain plasticity.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.