An affinity matrix containing the antimalarial drug target Plm II (plasmepsin II) as ligand was generated. This enzyme belongs to the family of Plasmodium (malarial parasite) aspartic proteinases, known as Plms (plasmepsins). The procedure established to obtain the support has two steps: the immobilization of the recombinant proenzyme of Plm II to NHS (N-hydroxysuccinimide)-activated Sepharose and the activation of the immobilized enzyme by incubation at pH 4.4 and 37 degrees C. The coupling reaction resulted in a high percentage immobilization (95.5%), and the matrices obtained had an average of 4.3 mg of protein/ml of gel. The activated matrices, but not the inactive ones, were able to hydrolyse two different chromogenic peptide substrates and haemoglobin. This ability was completely blocked by the addition of the general aspartic-proteinase inhibitor, pepstatin A, to the reaction mixture. The matrices were useful in the affinity purification of the Plm II inhibitory activity detected in marine invertebrates, such as Xestospongia muta (giant barrel sponge) and the gorgonian (sea-fan coral) Plexaura homomalla (black sea rod), with increases of 10.2- and 5.9-fold in the specific inhibitory activity respectively. The preliminary K(i) values obtained, 46.4 nM (X. muta) and 1.9 nM (P. homomalla), and the concave shapes of the inhibition curves reveal that molecules are reversible tight-binding inhibitors of Plm II. These results validated the use of the affinity matrix for the purification of Plm II inhibitors from complex mixtures and established the presence of Plm II inhibitors in some marine invertebrates.
Recent research suggests that marine organisms may produce compounds with activity against malaria parasites. Of a total of 27 aqueous extracts from different marine species, collected on the northwest Cuban coast, 20 were considered as showing no significant activity against Plasmodium falciparum F32, with minimum inhibitory concentrations (MIC) >500 microg/ml, while seven extracts (MIC < or =500 microg/ml) were selected for further investigation by determining their selectivity indices and in vivo antimalarial activity. Three species of tunicates were chosen, as more than 50% reduction of P. berghei parasitaemia was produced after administration of 250 or 500 mg/kg of their crude extracts into infected mice. The aqueous extracts of Microcosmus goanus, Ascidia sydneiensis and Phallusia nigra were partitioned between water and n-butanol; the organic phases inhibited P. falciparum growth by 50% at concentrations of 17.5 microg/ml, 20.9 microg/ml and 29.4 microg/ml respectively. In general, these results are similar to those of most ethnobotanical surveys. Further chemical studies are being undertaken in order to isolate new antimalarial compounds from these Caribbean tunicates.
Genomic analysis of the invasive marine snail Batillaria attramentaria from Elkhorn Slough, Moss Landing, California, USA using 150 bp paired-end Illumina sequences resulted in the assembly of its complete mitogenome. The mitogenome is 16,095 bp in length and contains 2 rRNA, 13 proteincoding, and 22 tRNA genes (GenBank Accession MN557850). Gene content and organization of B. attramentaria are identical to the Turritellidae and Pachychilidae. The phylogenetic analysis of B. attramentaria resolves it in a fully supported clade with these same two families in the superfamily Cerithioidea. Nucleotide BLAST searches of the Elkhorn Slough cox1 gene of B. attramentaria yielded identical sequences from invasive populations from California and British Columbia, and native populations from northeastern and central Japan. These data show that mitogenome sequencing is a useful tool for studying the classification and phylogenetic history Cerithioidea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.