One of the most common materials utilized by material extrusion 3D printing is acrylonitrile butadiene styrene (ABS). The work presented in this research explored the effect of the addition of reinforcing materials on the mechanical properties of ABS in an effort to create materials with enhanced physical properties. A comparison was made between pure ABS, two ABS matrix composites, and one ABS/elastomer blend with the purpose of characterizing the effect of additives on the mechanical properties. Tensile test results of specimens built in different orientations showed that ABS reinforced with 5% by weight TiO 2 exhibited the highest ultimate tensile strength for specimens built in both horizontal and vertical directions with 32.2 and 18.4 MPa, respectively. The compounding of an elastomeric material with ABS improved the surface finish of parts as they were visibly smoother compared to those printed from the ABS baseline material, though there was an observable decrease in the ductility of tensile specimens. Analysis was performed on the fracture surface of the tensile specimens through the use of scanning electron microscopy. Fractography revealed different modes of failure related to the different additives. The effects of additives on the anisotropy associated with the mechanical properties of 3D-printed parts were also analyzed.
Material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) technology is currently the most commonly used additive manufacturing method. However, ME3DP suffers from a limitation of compatible materials and typically relies upon amorphous thermoplastics, such as acrylonitrile butadiene styrene (ABS). The work presented here demonstrates the development and implementation of binary and ternary polymeric blends for ME3DP. Multiple blends of acrylonitrile butadiene styrene (ABS), styrene ethylene butadiene styrene (SEBS), and ultrahigh molecular weight polyethylene (UHMWPE) were created through a twin screw compounding process to produce novel polymer blends compatible with ME3DP platforms. Mechanical testing and fractography were used to characterize the different physical properties of these new blends. Though the new blends possessed different physical properties, compatibility with ME3DP platforms was maintained. Also, a decrease in surface roughness of a standard test piece was observed for some blends as compared with ABS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.