Dendrobatid poison frogs sequester lipophilic alkaloids from their arthropod prey to use as a form of chemical defense. Some dendrobatid frogs seasonally migrate between the leaf litter of the forest floor in the dry season to the canopy in the wet season, which may yield differences in prey (arthropods) and therefore alkaloid availability over space and time. Here, we document a seasonal vertical migration of Andinobates fulguritus (the yellow‐bellied poison frog) from ground to canopy between dry and wet seasons. We observed turnover in alkaloid composition between seasons and found that dry season frogs contained a lower relative quantity of alkaloids; however, there was no change in alkaloid richness between seasons. The 77 alkaloids of 13 structural classes identified in this population appear to be derived mostly from mites and ants, though the two most common alkaloids were mite derived. Our observed shifts in defensive profiles are consistent with well‐documented turnover in mite and ant communities between seasons and vertical strata. As climate change is expected to lengthen and strengthen dry seasons in many tropical regions, our results suggest that arboreal poison frogs forced to the ground for longer periods of time may see a shift in the abundance of alkaloids, possibly decreasing their defensive potential. This study provides further predictions for the wide‐reaching effects of climate change, even as nuanced as charismatic poison frogs losing their poisons.
Abstract in Spanish is available with online material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.