Gab proteins amplify and integrate signals stimulated by many growth factors. In culture and animals, retinoic acid (RA) induces neuronal differentiation. We show that Gab2 expression is detected in neurons in three models of neuronal differentiation: embryonic carcinoma (EC) stem cells, embryonic stem cells, and primary neural stem cells (NSCs). RA treatment induces apoptosis, countered by basic FGF (bFGF). In EC cells, Gab2 silencing results in hypersensitivity to RA-induced apoptosis and abrogates the protection by bFGF. Gab2 suppression reduces bFGF-dependent activation of AKT but not ERK, and constitutively active AKT, but not constitutively active MEK1, reverses the hypersensitization. Thus, Gab2-mediated AKT activation is required for bFGF's protection. Moreover, Gab2 silencing impairs the differentiation of EC cells to neurons. Similarly, in NSCs, Gab2 suppression reduces bFGF-dependent proliferation as well as neuronal survival and production upon differentiation. Our findings provide the first evidence that Gab2 is an important player in neural differentiation, partly by acting downstream of bFGF to mediate survival through phosphoinositide 3 kinase–AKT.
High-speed capillary electrophoresis (CE) was employed to detect binding and inhibition of SH2 domain proteins using fluorescently labeled phosphopeptides as affinity probes. Single SH2 protein-phosphopeptide complexes were detected and confirmed by competition and fluorescence anisotropy. The assay was then extended to a multiplexed system involving separation of three SH2 domain proteins: Src, SH2-Bbeta, and Fyn. The selectivity of the separation was improved by altering the charge of the peptide binding partners used, thus demonstrating a convenient way to control resolution for the multiplexed assay. The separation was completed within 6 s, allowing rapidly dissociating complexes to be detected. Two low molecular weight inhibitors were tested for inhibition selectivity and efficacy. One inhibitor interrupted binding interaction of all three proteins, while the other selectively inhibited Src only leaving SH2-Bbeta and Fyn complex barely affected. IC(50) of both selective and nonselective inhibitors were determined and compared for different proteins. The IC(50) of the nonselective inhibitor was 49 +/- 9, 323 +/- 42, and 228 +/- 19 microM (n = 3) for Src, SH2-Bbeta, and Fyn, respectively, indicating different efficacy of the nonselective inhibitor for different SH2 domain protein. It is concluded that high-speed CE has the potential for multiplexed screening of drugs that disrupt protein-protein interactions.
Fluorescence anisotropy (FA), non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) and high-speed capillary electrophoresis (CE) were evaluated for measuring dissociation kinetics of peptide-protein binding systems. Fyn-SH3-SH2, a protein construct consisting of the Src homology 2 (SH2) and SH3 domain of the protein Fyn, and a fluoresceinlabeled phosphopeptide were used as a model system. All three methods gave comparable half-life of ~53 s for Fyn-SH3-SH2:peptide complex. Achieving satisfactory results by NECEEM required columns over 30 cm long. When using Fyn-SH2-SH3 tagged with glutathione S-transferase (GST) as the binding protein, both FA and NECEEM assays gave evidence of two complexes forming with the peptide, yet neither method allowed accurate measurement of dissociation rates for both complexes because of a lack of resolution. High-speed CE, with a 7 s separation time, enabled separation of both complexes and allowed determination of dissociation rate of both complexes independently. The two complexes had half-lives of 22.0 ± 2.7 and 58.8 ± 6.1 s respectively. Concentration studies revealed that the GST-Fyn-SH3-SH2 protein formed a dimer so that complexes had binding ratios of 2:1 (protein-to-peptide ratio) and 2:2. Our results demonstrate that while all methods are suitable for 1:1 binding systems, high-speed CE is unique in allowing multiple complexes to be resolved simultaneously. This property allows determination of binding kinetics of complicated systems and makes the technique useful for discovering novel affinity interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.