Fatty acid amides (FAAs) constitute a large class of endogenous signaling lipids that modulate several physiological processes, including pain, feeding, blood pressure, sleep, and inflammation. Although FAAs have been proposed to evoke their behavioral effects through both central and peripheral mechanisms, these distinct signaling pathways have remained experimentally challenging to separate. Here, we report a transgenic mouse model in which the central and peripheral FAA systems have been functionally uncoupled. Mice were generated that express the principle FAA-degrading enzyme FAA hydrolase (FAAH) specifically in the nervous system (FAAH-NS mice) by crossing FAAH ؊/؊ mice with transgenic mice that express FAAH under the neural specific enolase promoter. FAAH-NS mice were found to possess wild-type levels of FAAs in the brain and spinal cord, but significantly elevated concentrations of these lipid transmitters in peripheral tissues. This anatomically restricted biochemical phenotype correlated with a reversion of the reduced pain sensitivity of FAAH ؊/؊ mice, consistent with the FAA anandamide producing this effect by acting on cannabinoid receptors in the nervous system. Interestingly, however, FAAH-NS mice still exhibited an antiinflammatory phenotype similar in magnitude to FAAH ؊/؊ mice, indicating that this activity, which was not blocked by cannabinoid receptor antagonists, was mediated by peripherally elevated FAAs. These data suggest that the central and peripheral FAA signaling systems regulate discrete behavioral processes and may be targeted for distinct therapeutic gain.
A number of recent in vitro studies have described a role for endogenous cannabinoids ("endocannabinoids") as transsynaptic modulators of neuronal activity in the hippocampus and other brain regions. However, the impact that endocannabinoid signals may have on activity-dependent neural events in vivo remains mostly unknown and technically challenging to address because of the short half-life of these chemical messengers in the brain. Mice lacking the enzyme fatty acid amide hydrolase [FAAH (-/-) mice] are severely impaired in their ability to degrade the endocannabinoid anandamide and therefore represent a unique animal model in which to examine the function of this signaling lipid in vivo. Here, we show that the administration of anandamide dramatically augments the severity of chemically induced seizures in FAAH (-/-) mice but not in wild-type mice. Anandamide-enhanced seizures in FAAH (-/-) mice resulted in significant neuronal damage in the CA1 and CA3 regions of the hippocampus for the bicuculline and kainate models, respectively. Notably, in the absence of anandamide treatment, FAAH (-/-) mice exhibited enhanced seizure responses to high doses of kainate that correlated with greatly elevated endogenous levels of anandamide in the hippocampus of these animals. Collectively, these studies suggest that both exogenously administered and endogenously produced anandamide display FAAH-regulated proconvulsant activity and do not support a general neuroprotective role for this endocannabinoid in response to excitotoxic stimuli in vivo. More generally, these findings demonstrate that the disinhibitory actions of endocannabinoids observed in hippocampal slices in vitro may also occur in vivo.
Neurocan is a member of the aggrecan family of proteoglycans which are characterized by NH 2 -terminal domains binding hyaluronan, and COOH-terminal domains containing C-type lectin-like modules. To detect and enhance the affinity for complementary ligands of neurocan, the COOH-terminal neurocan domain was fused with the NH 2 -terminal region of tenascin-C, which contains the hexamerization domain of this extracellular matrix glycoprotein. The fusion protein was designed to contain the last downstream glycosaminoglycan attachment site and was expressed as a proteoglycan. In ligand overlay blots carried out with brain extracts, it recognized tenascin-C. The interaction was abolished by the addition of EDTA, or TNfn4,5, a bacterially expressed tenascin-C fragment comprising the fourth and fifth fibronectin type III module. The fusion protein directly reacted with this fragment in ligand blot and enzyme-linked immunosorbent assay procedures. Both tenascin-C and TNfn4,5 were retained on Sepharose 4B-linked carboxyl-terminal neurocan domains, which in BIAcore binding studies yielded a K D value of 17 nM for purified tenascin-C. We conclude that a divalent cation-dependent interaction between the COOH-terminal domain of neurocan and those fibronectin type III repeats is substantially involved in the binding of neurocan to tenascin-C.
Strong evidence suggests a mechanistic link between cholesterol metabolism and the formation of amyloid- peptides, the principal constituents of senile plaques found in the brains of patients with Alzheimer's disease. Here, we show that several fibrates and diaryl heterocycle cyclooxygenase inhibitors, among them the commonly used drugs fenofibrate and celecoxib, exhibit effects similar to those of cholesterol on cellular membranes and amyloid precursor protein (APP) processing. These drugs have the same effects on membrane rigidity as cholesterol, monitored here by an increase in fluorescence anisotropy. The effect of the drugs on cellular membranes was also reflected in the inhibitory action on the sarco(endo)plasmic reticulum Ca 2ϩ -ATPase, which is known to be inhibited by excess ordering of membrane lipids. The drug-induced decrease of membrane fluidity correlated with an increased association of APP and its -site cleaving enzyme BACE1 with detergent-resistant membranes (DRMs), which represent membrane clusters of substantial rigidity. DRMs are hypothesized to serve as platforms for the amyloidogenic processing of APP. According to this hypothesis, both cholesterol and the examined compounds stimulated the -secretase cleavage of APP, resulting in a massive increase of secreted amyloid- peptides. The membrane-ordering potential of the drugs was observed in a cell-free assay, suggesting that the amyloid- promoting effect was analog to cholesterol due to primary effect on membrane rigidity. Because fenofibrate and celecoxib are widely used in humans as hypolipidemic drugs for prevention of atherosclerosis and as anti-inflammatory drugs against arthritis, possible side effects should be considered upon long-term clinical application.According to the amyloid cascade hypothesis, the formation of amyloid- peptides derived from the amyloid precursor protein (APP) is causally associated with the pathogenesis of Alzheimer's disease (AD). This hypothesis is substantiated by several lines of evidence: 1) amyloid- peptides are found accumulated in extracellular plaques in the brains of patients with AD; 2) several genetic predispositions exist with mutations concerning APP itself or components of the ␥-secretase complex (presenilins), one of the APP processing enzymes; 3) increased APP dosage by triplication of APP gene locus in Down syndrome (trisomy 21) or by APP gene locus duplication and promoter mutations that increase APP expression promote the progression of AD; and 4) the toxicity of aggregated amyloid- peptides is clearly documented in vitro (Hardy and Selkoe, 2002;Rovelet-Lecrux et al., 2006;Theuns et al., 2006). Besides few familial forms with the aforementioned mutations, most cases of AD are age-associated and sporadic; therefore, other factors promoting the formation of amyloid- peptides over time have to be considered. In this regard, alterations in the lipid metabolism, particularly disturbances of cholesterol homeostasis, may represent high-risk factors (Shobab et al., 2005). Because am...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.