The problem of guaranteeing stability from the entire null controllable region (NCR) for multi-input linear dynamical systems is addressed in the present manuscript. The proposed controller design is inspired by results for single input systems and generalized to multiple input systems. The approach relies on utilizing the level sets of the NCR as level sets of a Lyapunov function. A contractive constraint is incorporated into a model predictive control design, guaranteeing feasibility for any horizon length, and resulting in the NCR as the closed-loop stability region. The proposed method is illustrated using a simulation example.
Periprosthetic joint infections (PJIs) in arthroplasty and osteosynthesis-associated infections (OAIs) in reconstructive surgery still represent a challenging complication in orthopaedics and traumatology causing a burden worsening the patient’s quality of life, for caregiver and treating physicians, and for healthcare systems. PJIs and OAIs are the result of bacterial adhesion over an implant surface with subsequent biofilm formation. Therefore, the clinical pathological outcome is a difficult-to-eradicate persistent infection. Strategies to treat PJIs and OAIs involve debridement, the replacement of internal fixators or articular prostheses, and intravenous antibiotics. However, long treatments and surgical revision cause discomfort for patients; hence, the prevention of PJIs and OAIs represents a higher priority than treatment. Local antibiotic treatments through coating-release systems are becoming a smart approach to prevent this complication. Hydrophilic coatings, loaded with antibiotics, simultaneously provide a barrier effect against bacterial adhesion and allow for the local delivery of an antibiotic. The intraoperative use of a hyaluronan (HY)-derivative coating in the form of a gel, loaded with antibiotics to prevent PJI, has recently raised interest in orthopaedics. Current evidence supports the use of this coating in the prophylaxis of PJI and IRIs in terms of clinical outcomes and infection reduction. Thus, the purpose of this narrative review is to assess the use of a commercially available HY derivative in the form of a gel, highlighting the characteristics of this biomaterial, which makes it attractive for the management of PJIs and IRIs in orthopaedics and traumatology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.